CraftsMan3D / gradio_app.py
wyysf's picture
i
c459ff0
raw
history blame
13.4 kB
import argparse
import os
import json
import torch
import sys
import time
import importlib
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from collections import OrderedDict
import trimesh
from einops import repeat, rearrange
import pytorch_lightning as pl
from typing import Dict, Optional, Tuple, List
import gradio as gr
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))
import tempfile
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.config import ExperimentConfig, load_config
from apps.utils import *
from apps.mv_models import GenMVImage
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
<div>
Select or upload a image, then just click 'Generate'.
<br>
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka εŒ εΏƒ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here.
<br>
If you found Crafts is helpful, please help to ⭐ the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
<br>
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh.
<br>
*If you have your own multi-view images, you can directly upload it.
</div>
'''
_CITE_ = r"""
---
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{craftsman,
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal = {arxiv:xxx},
year = {2024},
}
```
πŸ€— **Acknowledgements**
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
πŸ“‹ **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
model = None
cached_dir = None
def image2mesh(view_front: np.ndarray,
view_right: np.ndarray,
view_back: np.ndarray,
view_left: np.ndarray,
more: bool = False,
scheluder_name: str ="DDIMScheduler",
guidance_scale: int = 7.5,
seed: int = 4,
octree_depth: int = 7):
sample_inputs = {
"mvimages": [[
Image.fromarray(view_front),
Image.fromarray(view_right),
Image.fromarray(view_back),
Image.fromarray(view_left)
]]
}
global model
latents = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
seed=seed
)[0]
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth
)
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
# filepath = f"{cached_dir}/{time.time()}.obj"
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh.export(filepath, include_normals=True)
if 'Remesh' in more:
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
print("Remeshing with Instant Meshes...")
# target_face_count = int(len(mesh.faces)/10)
target_face_count = 1000
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
os.system(command)
filepath = remeshed_filepath
# filepath = filepath.replace('.obj', '_remeshed.obj')
return filepath
if __name__=="__main__":
parser = argparse.ArgumentParser()
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
cached_dir = args.cached_dir
os.makedirs(args.cached_dir, exist_ok=True)
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
print(f"using device: {device}")
# for multi-view images generation
background_choice = OrderedDict({
"Alpha as Mask": "Alpha as Mask",
"Auto Remove Background": "Auto Remove Background",
"Original Image": "Original Image",
})
mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
# for 3D latent set diffusion
# for 3D latent set diffusion
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
scheluder_dict = OrderedDict({
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
})
# main GUI
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
image_input = gr.Image(
label="Image Input",
image_mode="RGBA",
sources="upload",
type="pil",
)
with gr.Row():
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
with gr.Row():
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
with gr.Row():
seed = gr.Number(42, label='Seed', show_label=True)
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
# remesh = gr.Checkbox(value=False, label='Remesh')
# symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
gr.Examples(
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
inputs=[image_input],
examples_per_page=8
)
with gr.Column(scale=4):
with gr.Row():
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
with gr.Row():
view_front = gr.Image(label="Front", interactive=True, show_label=True)
view_right = gr.Image(label="Right", interactive=True, show_label=True)
view_back = gr.Image(label="Back", interactive=True, show_label=True)
view_left = gr.Image(label="Left", interactive=True, show_label=True)
# with gr.Accordion('Advanced options', open=False):
with gr.Row(equal_height=True):
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
with gr.Accordion('Advanced options (2D)', open=False):
with gr.Row():
crop_size = gr.Number(224, label='Crop size')
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
with gr.Row():
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
with gr.Row():
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
with gr.Row():
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale")
mvimg_steps = gr.Number(value=50, minimum=20, maximum=100, label="2D Sample Steps", precision=0)
with gr.Accordion('Advanced options (3D)', open=False):
with gr.Row():
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0)
with gr.Row():
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
gr.Markdown(_CITE_)
outputs = [output_model_obj]
rmbg = RMBG(device)
gen_mvimg = GenMVImage(device)
model = load_model(ckpt_path, config_path, device)
run_btn.click(fn=check_input_image, inputs=[image_input]
).success(
fn=rmbg.run,
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
outputs=[image_input]
).success(
fn=gen_mvimg.run,
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
outputs=[view_front, view_right, view_back, view_left]
).success(
fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
run_mv_btn.click(fn=gen_mvimg.run,
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
outputs=[view_front, view_right, view_back, view_left]
)
run_3d_btn.click(fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
demo.queue().launch(share=True, allowed_paths=[args.cached_dir])