wyysf commited on
Commit
4fc75fa
·
verified ·
1 Parent(s): d758270

Upload 11 files

Browse files
apps/third_party/CRM/util/__init__.py ADDED
File without changes
apps/third_party/CRM/util/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (165 Bytes). View file
 
apps/third_party/CRM/util/__pycache__/flexicubes.cpython-38.pyc ADDED
Binary file (22.3 kB). View file
 
apps/third_party/CRM/util/__pycache__/flexicubes_geometry.cpython-38.pyc ADDED
Binary file (3.74 kB). View file
 
apps/third_party/CRM/util/__pycache__/renderer.cpython-38.pyc ADDED
Binary file (1.66 kB). View file
 
apps/third_party/CRM/util/__pycache__/tables.cpython-38.pyc ADDED
Binary file (26.6 kB). View file
 
apps/third_party/CRM/util/flexicubes.py ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
8
+ import torch
9
+ from util.tables import *
10
+
11
+ __all__ = [
12
+ 'FlexiCubes'
13
+ ]
14
+
15
+
16
+ class FlexiCubes:
17
+ """
18
+ This class implements the FlexiCubes method for extracting meshes from scalar fields.
19
+ It maintains a series of lookup tables and indices to support the mesh extraction process.
20
+ FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances
21
+ the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting
22
+ the surface representation through gradient-based optimization.
23
+
24
+ During instantiation, the class loads DMC tables from a file and transforms them into
25
+ PyTorch tensors on the specified device.
26
+
27
+ Attributes:
28
+ device (str): Specifies the computational device (default is "cuda").
29
+ dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges
30
+ associated with each dual vertex in 256 Marching Cubes (MC) configurations.
31
+ num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of
32
+ the 256 MC configurations.
33
+ check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19
34
+ of the DMC configurations.
35
+ tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface.
36
+ quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles
37
+ along one diagonal.
38
+ quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into
39
+ two triangles along the other diagonal.
40
+ quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles
41
+ during training by connecting all edges to their midpoints.
42
+ cube_corners (torch.Tensor): Defines the positions of a standard unit cube's
43
+ eight corners in 3D space, ordered starting from the origin (0,0,0),
44
+ moving along the x-axis, then y-axis, and finally z-axis.
45
+ Used as a blueprint for generating a voxel grid.
46
+ cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used
47
+ to retrieve the case id.
48
+ cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs.
49
+ Used to retrieve edge vertices in DMC.
50
+ edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with
51
+ their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the
52
+ first edge is oriented along the x-axis.
53
+ dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges
54
+ across four adjacent cubes to the shared faces of these cubes. For instance,
55
+ dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along
56
+ the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively.
57
+ This tensor is only utilized during isosurface tetrahedralization.
58
+ adj_pairs (torch.Tensor):
59
+ A tensor containing index pairs that correspond to neighboring cubes that share the same edge.
60
+ qef_reg_scale (float):
61
+ The scaling factor applied to the regularization loss to prevent issues with singularity
62
+ when solving the QEF. This parameter is only used when a 'grad_func' is specified.
63
+ weight_scale (float):
64
+ The scale of weights in FlexiCubes. Should be between 0 and 1.
65
+ """
66
+
67
+ def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
68
+
69
+ self.device = device
70
+ self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
71
+ self.num_vd_table = torch.tensor(num_vd_table,
72
+ dtype=torch.long, device=device, requires_grad=False)
73
+ self.check_table = torch.tensor(
74
+ check_table,
75
+ dtype=torch.long, device=device, requires_grad=False)
76
+
77
+ self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
78
+ self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
79
+ self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
80
+ self.quad_split_train = torch.tensor(
81
+ [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
82
+
83
+ self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
84
+ 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
85
+ self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
86
+ self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
87
+ 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
88
+
89
+ self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
90
+ dtype=torch.long, device=device)
91
+ self.dir_faces_table = torch.tensor([
92
+ [[5, 4], [3, 2], [4, 5], [2, 3]],
93
+ [[5, 4], [1, 0], [4, 5], [0, 1]],
94
+ [[3, 2], [1, 0], [2, 3], [0, 1]]
95
+ ], dtype=torch.long, device=device)
96
+ self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
97
+ self.qef_reg_scale = qef_reg_scale
98
+ self.weight_scale = weight_scale
99
+
100
+ def construct_voxel_grid(self, res):
101
+ """
102
+ Generates a voxel grid based on the specified resolution.
103
+
104
+ Args:
105
+ res (int or list[int]): The resolution of the voxel grid. If an integer
106
+ is provided, it is used for all three dimensions. If a list or tuple
107
+ of 3 integers is provided, they define the resolution for the x,
108
+ y, and z dimensions respectively.
109
+
110
+ Returns:
111
+ (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the
112
+ cube corners (index into vertices) of the constructed voxel grid.
113
+ The vertices are centered at the origin, with the length of each
114
+ dimension in the grid being one.
115
+ """
116
+ base_cube_f = torch.arange(8).to(self.device)
117
+ if isinstance(res, int):
118
+ res = (res, res, res)
119
+ voxel_grid_template = torch.ones(res, device=self.device)
120
+
121
+ res = torch.tensor([res], dtype=torch.float, device=self.device)
122
+ coords = torch.nonzero(voxel_grid_template).float() / res # N, 3
123
+ verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3)
124
+ cubes = (base_cube_f.unsqueeze(0) +
125
+ torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1)
126
+
127
+ verts_rounded = torch.round(verts * 10**5) / (10**5)
128
+ verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True)
129
+ cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8)
130
+
131
+ return verts_unique - 0.5, cubes
132
+
133
+ def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None,
134
+ gamma_f=None, training=False, output_tetmesh=False, grad_func=None):
135
+ r"""
136
+ Main function for mesh extraction from scalar field using FlexiCubes. This function converts
137
+ discrete signed distance fields, encoded on voxel grids and additional per-cube parameters,
138
+ to triangle or tetrahedral meshes using a differentiable operation as described in
139
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances
140
+ mesh quality and geometric fidelity by adjusting the surface representation based on gradient
141
+ optimization. The output surface is differentiable with respect to the input vertex positions,
142
+ scalar field values, and weight parameters.
143
+
144
+ If you intend to extract a surface mesh from a fixed Signed Distance Field without the
145
+ optimization of parameters, it is suggested to provide the "grad_func" which should
146
+ return the surface gradient at any given 3D position. When grad_func is provided, the process
147
+ to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as
148
+ described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy.
149
+ Please note, this approach is non-differentiable.
150
+
151
+ For more details and example usage in optimization, refer to the
152
+ `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper.
153
+
154
+ Args:
155
+ x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed.
156
+ s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values
157
+ denote that the corresponding vertex resides inside the isosurface. This affects
158
+ the directions of the extracted triangle faces and volume to be tetrahedralized.
159
+ cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid.
160
+ res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it
161
+ is used for all three dimensions. If a list or tuple of 3 integers is provided, they
162
+ specify the resolution for the x, y, and z dimensions respectively.
163
+ beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual
164
+ vertices positioning. Defaults to uniform value for all edges.
165
+ alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual
166
+ vertices positioning. Defaults to uniform value for all vertices.
167
+ gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of
168
+ quadrilaterals into triangles. Defaults to uniform value for all cubes.
169
+ training (bool, optional): If set to True, applies differentiable quad splitting for
170
+ training. Defaults to False.
171
+ output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise,
172
+ outputs a triangular mesh. Defaults to False.
173
+ grad_func (callable, optional): A function to compute the surface gradient at specified
174
+ 3D positions (input: Nx3 positions). The function should return gradients as an Nx3
175
+ tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None.
176
+
177
+ Returns:
178
+ (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing:
179
+ - Vertices for the extracted triangular/tetrahedral mesh.
180
+ - Faces for the extracted triangular/tetrahedral mesh.
181
+ - Regularizer L_dev, computed per dual vertex.
182
+
183
+ .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization:
184
+ https://research.nvidia.com/labs/toronto-ai/flexicubes/
185
+ .. _Manifold Dual Contouring:
186
+ https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf
187
+ """
188
+
189
+ surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8)
190
+ if surf_cubes.sum() == 0:
191
+ return torch.zeros(
192
+ (0, 3),
193
+ device=self.device), torch.zeros(
194
+ (0, 4),
195
+ dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros(
196
+ (0, 3),
197
+ dtype=torch.long, device=self.device), torch.zeros(
198
+ (0),
199
+ device=self.device)
200
+ beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes)
201
+
202
+ case_ids = self._get_case_id(occ_fx8, surf_cubes, res)
203
+
204
+ surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes)
205
+
206
+ vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd(
207
+ x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func)
208
+ vertices, faces, s_edges, edge_indices = self._triangulate(
209
+ s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func)
210
+ if not output_tetmesh:
211
+ return vertices, faces, L_dev
212
+ else:
213
+ vertices, tets = self._tetrahedralize(
214
+ x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
215
+ surf_cubes, training)
216
+ return vertices, tets, L_dev
217
+
218
+ def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
219
+ """
220
+ Regularizer L_dev as in Equation 8
221
+ """
222
+ dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
223
+ mean_l2 = torch.zeros_like(vd[:, 0])
224
+ mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
225
+ mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
226
+ return mad
227
+
228
+ def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes):
229
+ """
230
+ Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
231
+ """
232
+ n_cubes = surf_cubes.shape[0]
233
+
234
+ if beta_fx12 is not None:
235
+ beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1)
236
+ else:
237
+ beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
238
+
239
+ if alpha_fx8 is not None:
240
+ alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1)
241
+ else:
242
+ alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
243
+
244
+ if gamma_f is not None:
245
+ gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2
246
+ else:
247
+ gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
248
+
249
+ return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes]
250
+
251
+ @torch.no_grad()
252
+ def _get_case_id(self, occ_fx8, surf_cubes, res):
253
+ """
254
+ Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
255
+ ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
256
+ supplementary material. It should be noted that this function assumes a regular grid.
257
+ """
258
+ case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
259
+
260
+ problem_config = self.check_table.to(self.device)[case_ids]
261
+ to_check = problem_config[..., 0] == 1
262
+ problem_config = problem_config[to_check]
263
+ if not isinstance(res, (list, tuple)):
264
+ res = [res, res, res]
265
+
266
+ # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
267
+ # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
268
+ # This allows efficient checking on adjacent cubes.
269
+ problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
270
+ vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
271
+ vol_idx_problem = vol_idx[surf_cubes][to_check]
272
+ problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
273
+ vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
274
+
275
+ within_range = (
276
+ vol_idx_problem_adj[..., 0] >= 0) & (
277
+ vol_idx_problem_adj[..., 0] < res[0]) & (
278
+ vol_idx_problem_adj[..., 1] >= 0) & (
279
+ vol_idx_problem_adj[..., 1] < res[1]) & (
280
+ vol_idx_problem_adj[..., 2] >= 0) & (
281
+ vol_idx_problem_adj[..., 2] < res[2])
282
+
283
+ vol_idx_problem = vol_idx_problem[within_range]
284
+ vol_idx_problem_adj = vol_idx_problem_adj[within_range]
285
+ problem_config = problem_config[within_range]
286
+ problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
287
+ vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
288
+ # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
289
+ to_invert = (problem_config_adj[..., 0] == 1)
290
+ idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
291
+ case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
292
+ return case_ids
293
+
294
+ @torch.no_grad()
295
+ def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes):
296
+ """
297
+ Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
298
+ can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
299
+ and marks the cube edges with this index.
300
+ """
301
+ occ_n = s_n < 0
302
+ all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2)
303
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
304
+
305
+ unique_edges = unique_edges.long()
306
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
307
+
308
+ surf_edges_mask = mask_edges[_idx_map]
309
+ counts = counts[_idx_map]
310
+
311
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1
312
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device)
313
+ # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
314
+ # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
315
+ idx_map = mapping[_idx_map]
316
+ surf_edges = unique_edges[mask_edges]
317
+ return surf_edges, idx_map, counts, surf_edges_mask
318
+
319
+ @torch.no_grad()
320
+ def _identify_surf_cubes(self, s_n, cube_fx8):
321
+ """
322
+ Identifies grid cubes that intersect with the underlying surface by checking if the signs at
323
+ all corners are not identical.
324
+ """
325
+ occ_n = s_n < 0
326
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
327
+ _occ_sum = torch.sum(occ_fx8, -1)
328
+ surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
329
+ return surf_cubes, occ_fx8
330
+
331
+ def _linear_interp(self, edges_weight, edges_x):
332
+ """
333
+ Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
334
+ """
335
+ edge_dim = edges_weight.dim() - 2
336
+ assert edges_weight.shape[edge_dim] == 2
337
+ edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
338
+ torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim)
339
+ denominator = edges_weight.sum(edge_dim)
340
+ ue = (edges_x * edges_weight).sum(edge_dim) / denominator
341
+ return ue
342
+
343
+ def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None):
344
+ p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
345
+ norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
346
+ c_bx3 = c_bx3.reshape(-1, 3)
347
+ A = norm_bxnx3
348
+ B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
349
+
350
+ A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
351
+ B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1)
352
+ A = torch.cat([A, A_reg], 1)
353
+ B = torch.cat([B, B_reg], 1)
354
+ dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
355
+ return dual_verts
356
+
357
+ def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func):
358
+ """
359
+ Computes the location of dual vertices as described in Section 4.2
360
+ """
361
+ alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
362
+ surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
363
+ surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
364
+ zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
365
+
366
+ idx_map = idx_map.reshape(-1, 12)
367
+ num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
368
+ edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
369
+
370
+ total_num_vd = 0
371
+ vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
372
+ if grad_func is not None:
373
+ normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1)
374
+ vd = []
375
+ for num in torch.unique(num_vd):
376
+ cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
377
+ curr_num_vd = cur_cubes.sum() * num
378
+ curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
379
+ curr_edge_group_to_vd = torch.arange(
380
+ curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
381
+ total_num_vd += curr_num_vd
382
+ curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
383
+ cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
384
+
385
+ curr_mask = (curr_edge_group != -1)
386
+ edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
387
+ edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
388
+ edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
389
+ vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
390
+ vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
391
+
392
+ if grad_func is not None:
393
+ with torch.no_grad():
394
+ cube_e_verts_idx = idx_map[cur_cubes]
395
+ curr_edge_group[~curr_mask] = 0
396
+
397
+ verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group)
398
+ verts_group_idx[verts_group_idx == -1] = 0
399
+ verts_group_pos = torch.index_select(
400
+ input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3)
401
+ v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1)
402
+ curr_mask = curr_mask.reshape(-1, num.item(), 7, 1)
403
+ verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2))
404
+
405
+ normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape(
406
+ -1, num.item(), 7,
407
+ 3)
408
+ curr_mask = curr_mask.squeeze(2)
409
+ vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask,
410
+ verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3))
411
+ edge_group = torch.cat(edge_group)
412
+ edge_group_to_vd = torch.cat(edge_group_to_vd)
413
+ edge_group_to_cube = torch.cat(edge_group_to_cube)
414
+ vd_num_edges = torch.cat(vd_num_edges)
415
+ vd_gamma = torch.cat(vd_gamma)
416
+
417
+ if grad_func is not None:
418
+ vd = torch.cat(vd)
419
+ L_dev = torch.zeros([1], device=self.device)
420
+ else:
421
+ vd = torch.zeros((total_num_vd, 3), device=self.device)
422
+ beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
423
+
424
+ idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
425
+
426
+ x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
427
+ s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
428
+
429
+ zero_crossing_group = torch.index_select(
430
+ input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
431
+
432
+ alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
433
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
434
+ ue_group = self._linear_interp(s_group * alpha_group, x_group)
435
+
436
+ beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0,
437
+ index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
438
+ beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
439
+ vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
440
+ L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
441
+
442
+ v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
443
+
444
+ vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
445
+ 12 + edge_group, src=v_idx[edge_group_to_vd])
446
+
447
+ return vd, L_dev, vd_gamma, vd_idx_map
448
+
449
+ def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func):
450
+ """
451
+ Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
452
+ triangles based on the gamma parameter, as described in Section 4.3.
453
+ """
454
+ with torch.no_grad():
455
+ group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
456
+ group = idx_map.reshape(-1)[group_mask]
457
+ vd_idx = vd_idx_map[group_mask]
458
+ edge_indices, indices = torch.sort(group, stable=True)
459
+ quad_vd_idx = vd_idx[indices].reshape(-1, 4)
460
+
461
+ # Ensure all face directions point towards the positive SDF to maintain consistent winding.
462
+ s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
463
+ flip_mask = s_edges[:, 0] > 0
464
+ quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
465
+ quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
466
+ if grad_func is not None:
467
+ # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients.
468
+ with torch.no_grad():
469
+ vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1)
470
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
471
+ gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True)
472
+ gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True)
473
+ else:
474
+ quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
475
+ gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor(
476
+ 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1)
477
+ gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor(
478
+ 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1)
479
+ if not training:
480
+ mask = (gamma_02 > gamma_13).squeeze(1)
481
+ faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
482
+ faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
483
+ faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
484
+ faces = faces.reshape(-1, 3)
485
+ else:
486
+ vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
487
+ vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) +
488
+ torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2
489
+ vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) +
490
+ torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2
491
+ weight_sum = (gamma_02 + gamma_13) + 1e-8
492
+ vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) /
493
+ weight_sum.unsqueeze(-1)).squeeze(1)
494
+ vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
495
+ vd = torch.cat([vd, vd_center])
496
+ faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
497
+ faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
498
+ return vd, faces, s_edges, edge_indices
499
+
500
+ def _tetrahedralize(
501
+ self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices,
502
+ surf_cubes, training):
503
+ """
504
+ Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5.
505
+ """
506
+ occ_n = s_n < 0
507
+ occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8)
508
+ occ_sum = torch.sum(occ_fx8, -1)
509
+
510
+ inside_verts = x_nx3[occ_n]
511
+ mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1
512
+ mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0]
513
+ """
514
+ For each grid edge connecting two grid vertices with different
515
+ signs, we first form a four-sided pyramid by connecting one
516
+ of the grid vertices with four mesh vertices that correspond
517
+ to the grid edge and then subdivide the pyramid into two tetrahedra
518
+ """
519
+ inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[
520
+ s_edges < 0]]
521
+ if not training:
522
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1)
523
+ else:
524
+ inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1)
525
+
526
+ tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1)
527
+ """
528
+ For each grid edge connecting two grid vertices with the
529
+ same sign, the tetrahedron is formed by the two grid vertices
530
+ and two vertices in consecutive adjacent cells
531
+ """
532
+ inside_cubes = (occ_sum == 8)
533
+ inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1)
534
+ inside_cubes_center_idx = torch.arange(
535
+ inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0]
536
+
537
+ surface_n_inside_cubes = surf_cubes | inside_cubes
538
+ edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13),
539
+ dtype=torch.long, device=x_nx3.device) * -1
540
+ surf_cubes = surf_cubes[surface_n_inside_cubes]
541
+ inside_cubes = inside_cubes[surface_n_inside_cubes]
542
+ edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12)
543
+ edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx
544
+
545
+ all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2)
546
+ unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
547
+ unique_edges = unique_edges.long()
548
+ mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2
549
+ mask = mask_edges[_idx_map]
550
+ counts = counts[_idx_map]
551
+ mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1
552
+ mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device)
553
+ idx_map = mapping[_idx_map]
554
+
555
+ group_mask = (counts == 4) & mask
556
+ group = idx_map.reshape(-1)[group_mask]
557
+ edge_indices, indices = torch.sort(group)
558
+ cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long,
559
+ device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask]
560
+ edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze(
561
+ 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask]
562
+ # Identify the face shared by the adjacent cells.
563
+ cube_idx_4 = cube_idx[indices].reshape(-1, 4)
564
+ edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0]
565
+ shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1)
566
+ cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1)
567
+ # Identify an edge of the face with different signs and
568
+ # select the mesh vertex corresponding to the identified edge.
569
+ case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255
570
+ case_ids_expand[surf_cubes] = case_ids
571
+ cases = case_ids_expand[cube_idx_4x2]
572
+ quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2)
573
+ mask = (quad_edge == -1).sum(-1) == 0
574
+ inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2)
575
+ tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask]
576
+
577
+ tets = torch.cat([tets_surface, tets_inside])
578
+ vertices = torch.cat([vertices, inside_verts, inside_cubes_center])
579
+ return vertices, tets
apps/third_party/CRM/util/flexicubes_geometry.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
8
+
9
+ import torch
10
+ from util.flexicubes import FlexiCubes # replace later
11
+ # from dmtet import sdf_reg_loss_batch
12
+ import torch.nn.functional as F
13
+
14
+ def get_center_boundary_index(grid_res, device):
15
+ v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
16
+ v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
17
+ center_indices = torch.nonzero(v.reshape(-1))
18
+
19
+ v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
20
+ v[:2, ...] = True
21
+ v[-2:, ...] = True
22
+ v[:, :2, ...] = True
23
+ v[:, -2:, ...] = True
24
+ v[:, :, :2] = True
25
+ v[:, :, -2:] = True
26
+ boundary_indices = torch.nonzero(v.reshape(-1))
27
+ return center_indices, boundary_indices
28
+
29
+ ###############################################################################
30
+ # Geometry interface
31
+ ###############################################################################
32
+ class FlexiCubesGeometry(object):
33
+ def __init__(
34
+ self, grid_res=64, scale=2.0, device='cuda', renderer=None,
35
+ render_type='neural_render', args=None):
36
+ super(FlexiCubesGeometry, self).__init__()
37
+ self.grid_res = grid_res
38
+ self.device = device
39
+ self.args = args
40
+ self.fc = FlexiCubes(device, weight_scale=0.5)
41
+ self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
42
+ if isinstance(scale, list):
43
+ self.verts[:, 0] = self.verts[:, 0] * scale[0]
44
+ self.verts[:, 1] = self.verts[:, 1] * scale[1]
45
+ self.verts[:, 2] = self.verts[:, 2] * scale[1]
46
+ else:
47
+ self.verts = self.verts * scale
48
+
49
+ all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
50
+ self.all_edges = torch.unique(all_edges, dim=0)
51
+
52
+ # Parameters used for fix boundary sdf
53
+ self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
54
+ self.renderer = renderer
55
+ self.render_type = render_type
56
+
57
+ def getAABB(self):
58
+ return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
59
+
60
+ def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
61
+ if indices is None:
62
+ indices = self.indices
63
+
64
+ verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
65
+ beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
66
+ gamma_f=weight_n[:, 20], training=is_training
67
+ )
68
+ return verts, faces, v_reg_loss
69
+
70
+
71
+ def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
72
+ return_value = dict()
73
+ if self.render_type == 'neural_render':
74
+ tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
75
+ mesh_v_nx3.unsqueeze(dim=0),
76
+ mesh_f_fx3.int(),
77
+ camera_mv_bx4x4,
78
+ mesh_v_nx3.unsqueeze(dim=0),
79
+ resolution=resolution,
80
+ device=self.device,
81
+ hierarchical_mask=hierarchical_mask
82
+ )
83
+
84
+ return_value['tex_pos'] = tex_pos
85
+ return_value['mask'] = mask
86
+ return_value['hard_mask'] = hard_mask
87
+ return_value['rast'] = rast
88
+ return_value['v_pos_clip'] = v_pos_clip
89
+ return_value['mask_pyramid'] = mask_pyramid
90
+ return_value['depth'] = depth
91
+ else:
92
+ raise NotImplementedError
93
+
94
+ return return_value
95
+
96
+ def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
97
+ # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
98
+ v_list = []
99
+ f_list = []
100
+ n_batch = v_deformed_bxnx3.shape[0]
101
+ all_render_output = []
102
+ for i_batch in range(n_batch):
103
+ verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
104
+ v_list.append(verts_nx3)
105
+ f_list.append(faces_fx3)
106
+ render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
107
+ all_render_output.append(render_output)
108
+
109
+ # Concatenate all render output
110
+ return_keys = all_render_output[0].keys()
111
+ return_value = dict()
112
+ for k in return_keys:
113
+ value = [v[k] for v in all_render_output]
114
+ return_value[k] = value
115
+ # We can do concatenation outside of the render
116
+ return return_value
apps/third_party/CRM/util/renderer.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import nvdiffrast.torch as dr
5
+ from util.flexicubes_geometry import FlexiCubesGeometry
6
+
7
+ class Renderer(nn.Module):
8
+ def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
9
+ super().__init__()
10
+
11
+ self.tet_grid_size = tet_grid_size
12
+ self.camera_angle_num = camera_angle_num
13
+ self.scale = scale
14
+ self.geo_type = geo_type
15
+ self.glctx = dr.RasterizeCudaContext()
16
+
17
+ if self.geo_type == "flex":
18
+ self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
19
+
20
+ def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
21
+
22
+ results = {}
23
+
24
+ deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
25
+ if self.geo_type == "flex":
26
+ deform = deform *0.5
27
+
28
+ v_deformed = verts + deform
29
+
30
+ verts_list = []
31
+ faces_list = []
32
+ reg_list = []
33
+ n_shape = verts.shape[0]
34
+ for i in range(n_shape):
35
+ verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
36
+ with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
37
+
38
+ verts_list.append(verts_i)
39
+ faces_list.append(faces_i)
40
+ reg_list.append(reg_i)
41
+ verts = verts_list
42
+ faces = faces_list
43
+
44
+ flexicubes_surface_reg = torch.cat(reg_list).mean()
45
+ flexicubes_weight_reg = (weight ** 2).mean()
46
+ results["flex_surf_loss"] = flexicubes_surface_reg
47
+ results["flex_weight_loss"] = flexicubes_weight_reg
48
+
49
+ return results, verts, faces
apps/third_party/CRM/util/tables.py ADDED
@@ -0,0 +1,791 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
8
+ dmc_table = [
9
+ [[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
10
+ [[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
11
+ [[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
12
+ [[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
13
+ [[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
14
+ [[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
15
+ [[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
16
+ [[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
17
+ [[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
18
+ [[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
19
+ [[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
20
+ [[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
21
+ [[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
22
+ [[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
23
+ [[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
24
+ [[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
25
+ [[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
26
+ [[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
27
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
28
+ [[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
29
+ [[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
30
+ [[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
31
+ [[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
32
+ [[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
33
+ [[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
34
+ [[0, 2, 8, 11, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
35
+ [[0, 1, 4, 5, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
36
+ [[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
37
+ [[5, 7, 8, 9, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
38
+ [[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
39
+ [[0, 1, 5, 7, 8, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
40
+ [[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
41
+ [[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
42
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
43
+ [[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
44
+ [[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
45
+ [[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
46
+ [[0, 3, 4, 7, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
47
+ [[0, 2, 9, 10, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
48
+ [[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
49
+ [[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
50
+ [[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
51
+ [[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
52
+ [[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
53
+ [[5, 7, 8, 9, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
54
+ [[0, 3, 5, 7, 9, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
55
+ [[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
56
+ [[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
57
+ [[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
58
+ [[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
59
+ [[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
60
+ [[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
61
+ [[4, 7, 8, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
62
+ [[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
63
+ [[0, 3, 9, 10, 11, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
64
+ [[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
65
+ [[4, 5, 9, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
66
+ [[0, 1, 8, 10, 11, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
67
+ [[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
68
+ [[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
69
+ [[5, 7, 8, 9, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
70
+ [[0, 1, 5, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
71
+ [[0, 3, 5, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
72
+ [[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
73
+ [[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
74
+ [[0, 3, 8, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
75
+ [[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
76
+ [[1, 3, 8, 9, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
77
+ [[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
78
+ [[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
79
+ [[0, 1, 9, -1, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
80
+ [[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
81
+ [[4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
82
+ [[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
83
+ [[0, 1, 4, 5, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
84
+ [[1, 3, 4, 5, 8, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
85
+ [[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
86
+ [[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
87
+ [[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
88
+ [[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
89
+ [[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
90
+ [[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
91
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
92
+ [[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
93
+ [[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
94
+ [[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
95
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
96
+ [[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
97
+ [[4, 5, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
98
+ [[0, 2, 6, 7, 8, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
99
+ [[0, 1, 4, 5, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
100
+ [[1, 2, 4, 5, 6, 7, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
101
+ [[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
102
+ [[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
103
+ [[0, 1, 2, 3, 5, 6, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
104
+ [[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
105
+ [[1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
106
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
107
+ [[0, 2, 9, 10, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
108
+ [[2, 3, 8, 9, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
109
+ [[4, 6, 8, 11, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
110
+ [[0, 3, 4, 6, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
111
+ [[0, 2, 9, 10, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
112
+ [[2, 3, 4, 6, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
113
+ [[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
114
+ [[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1]],
115
+ [[0, 2, 4, 5, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
116
+ [[2, 3, 4, 5, 8, 10, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
117
+ [[5, 6, 8, 9, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
118
+ [[0, 3, 5, 6, 9, 11, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
119
+ [[0, 2, 5, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
120
+ [[2, 3, 5, 6, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
121
+ [[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
122
+ [[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
123
+ [[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
124
+ [[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
125
+ [[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
126
+ [[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
127
+ [[0, 3, 4, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
128
+ [[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
129
+ [[4, 5, 9, -1, -1, -1, -1], [1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
130
+ [[0, 1, 6, 7, 8, 10, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
131
+ [[0, 3, 4, 5, 6, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
132
+ [[4, 5, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
133
+ [[1, 3, 5, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
134
+ [[0, 1, 5, 6, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
135
+ [[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
136
+ [[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
137
+ [[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
138
+ [[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
139
+ [[0, 1, 9, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
140
+ [[1, 3, 8, 9, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
141
+ [[4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
142
+ [[0, 3, 4, 7, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
143
+ [[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
144
+ [[1, 3, 4, 7, 9, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
145
+ [[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
146
+ [[0, 3, 8, -1, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
147
+ [[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
148
+ [[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
149
+ [[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
150
+ [[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
151
+ [[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
152
+ [[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
153
+ [[2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
154
+ [[0, 2, 8, 11, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
155
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
156
+ [[1, 2, 8, 9, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
157
+ [[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
158
+ [[0, 2, 4, 7, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
159
+ [[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1]],
160
+ [[1, 2, 4, 7, 9, 11, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
161
+ [[4, 6, 9, 10, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
162
+ [[0, 2, 8, 11, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
163
+ [[0, 1, 4, 6, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
164
+ [[1, 2, 4, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
165
+ [[6, 7, 8, 9, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
166
+ [[0, 2, 6, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
167
+ [[0, 1, 6, 7, 8, 10, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
168
+ [[1, 2, 6, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
169
+ [[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
170
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
171
+ [[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
172
+ [[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
173
+ [[4, 7, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
174
+ [[0, 3, 4, 7, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
175
+ [[0, 2, 5, 6, 9, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
176
+ [[2, 3, 4, 5, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
177
+ [[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
178
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
179
+ [[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
180
+ [[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
181
+ [[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
182
+ [[0, 1, 2, 3, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
183
+ [[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
184
+ [[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
185
+ [[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
186
+ [[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
187
+ [[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
188
+ [[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
189
+ [[4, 7, 8, -1, -1, -1, -1], [1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
190
+ [[0, 1, 4, 5, 6, 7, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
191
+ [[0, 3, 5, 6, 9, 11, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
192
+ [[4, 5, 6, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
193
+ [[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
194
+ [[0, 1, 4, 6, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
195
+ [[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
196
+ [[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
197
+ [[1, 3, 6, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
198
+ [[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
199
+ [[0, 3, 6, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
200
+ [[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
201
+ [[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
202
+ [[0, 3, 8, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
203
+ [[0, 1, 9, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
204
+ [[1, 3, 8, 9, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
205
+ [[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
206
+ [[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
207
+ [[0, 1, 9, -1, -1, -1, -1], [4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
208
+ [[1, 3, 4, 5, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
209
+ [[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
210
+ [[0, 3, 8, -1, -1, -1, -1], [4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
211
+ [[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
212
+ [[1, 3, 4, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
213
+ [[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
214
+ [[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
215
+ [[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
216
+ [[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
217
+ [[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
218
+ [[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
219
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
220
+ [[1, 2, 5, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
221
+ [[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
222
+ [[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
223
+ [[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
224
+ [[1, 2, 4, 5, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
225
+ [[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
226
+ [[0, 2, 4, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
227
+ [[0, 1, 2, 3, 4, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
228
+ [[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
229
+ [[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
230
+ [[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
231
+ [[0, 1, 2, 3, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
232
+ [[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
233
+ [[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
234
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
235
+ [[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
236
+ [[2, 3, 5, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
237
+ [[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
238
+ [[0, 1, 2, 3, 4, 5, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
239
+ [[0, 2, 4, 5, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
240
+ [[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
241
+ [[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
242
+ [[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
243
+ [[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
244
+ [[2, 3, 4, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
245
+ [[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
246
+ [[0, 1, 2, 3, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
247
+ [[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
248
+ [[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
249
+ [[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
250
+ [[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
251
+ [[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
252
+ [[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
253
+ [[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
254
+ [[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
255
+ [[0, 3, 4, 5, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
256
+ [[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
257
+ [[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
258
+ [[0, 1, 4, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
259
+ [[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
260
+ [[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
261
+ [[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
262
+ [[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
263
+ [[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]],
264
+ [[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]]
265
+ ]
266
+ num_vd_table = [0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2,
267
+ 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2,
268
+ 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 1,
269
+ 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2,
270
+ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2,
271
+ 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1,
272
+ 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,
273
+ 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2,
274
+ 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
275
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
276
+ check_table = [
277
+ [0, 0, 0, 0, 0],
278
+ [0, 0, 0, 0, 0],
279
+ [0, 0, 0, 0, 0],
280
+ [0, 0, 0, 0, 0],
281
+ [0, 0, 0, 0, 0],
282
+ [0, 0, 0, 0, 0],
283
+ [0, 0, 0, 0, 0],
284
+ [0, 0, 0, 0, 0],
285
+ [0, 0, 0, 0, 0],
286
+ [0, 0, 0, 0, 0],
287
+ [0, 0, 0, 0, 0],
288
+ [0, 0, 0, 0, 0],
289
+ [0, 0, 0, 0, 0],
290
+ [0, 0, 0, 0, 0],
291
+ [0, 0, 0, 0, 0],
292
+ [0, 0, 0, 0, 0],
293
+ [0, 0, 0, 0, 0],
294
+ [0, 0, 0, 0, 0],
295
+ [0, 0, 0, 0, 0],
296
+ [0, 0, 0, 0, 0],
297
+ [0, 0, 0, 0, 0],
298
+ [0, 0, 0, 0, 0],
299
+ [0, 0, 0, 0, 0],
300
+ [0, 0, 0, 0, 0],
301
+ [0, 0, 0, 0, 0],
302
+ [0, 0, 0, 0, 0],
303
+ [0, 0, 0, 0, 0],
304
+ [0, 0, 0, 0, 0],
305
+ [0, 0, 0, 0, 0],
306
+ [0, 0, 0, 0, 0],
307
+ [0, 0, 0, 0, 0],
308
+ [0, 0, 0, 0, 0],
309
+ [0, 0, 0, 0, 0],
310
+ [0, 0, 0, 0, 0],
311
+ [0, 0, 0, 0, 0],
312
+ [0, 0, 0, 0, 0],
313
+ [0, 0, 0, 0, 0],
314
+ [0, 0, 0, 0, 0],
315
+ [0, 0, 0, 0, 0],
316
+ [0, 0, 0, 0, 0],
317
+ [0, 0, 0, 0, 0],
318
+ [0, 0, 0, 0, 0],
319
+ [0, 0, 0, 0, 0],
320
+ [0, 0, 0, 0, 0],
321
+ [0, 0, 0, 0, 0],
322
+ [0, 0, 0, 0, 0],
323
+ [0, 0, 0, 0, 0],
324
+ [0, 0, 0, 0, 0],
325
+ [0, 0, 0, 0, 0],
326
+ [0, 0, 0, 0, 0],
327
+ [0, 0, 0, 0, 0],
328
+ [0, 0, 0, 0, 0],
329
+ [0, 0, 0, 0, 0],
330
+ [0, 0, 0, 0, 0],
331
+ [0, 0, 0, 0, 0],
332
+ [0, 0, 0, 0, 0],
333
+ [0, 0, 0, 0, 0],
334
+ [0, 0, 0, 0, 0],
335
+ [0, 0, 0, 0, 0],
336
+ [0, 0, 0, 0, 0],
337
+ [0, 0, 0, 0, 0],
338
+ [1, 1, 0, 0, 194],
339
+ [1, -1, 0, 0, 193],
340
+ [0, 0, 0, 0, 0],
341
+ [0, 0, 0, 0, 0],
342
+ [0, 0, 0, 0, 0],
343
+ [0, 0, 0, 0, 0],
344
+ [0, 0, 0, 0, 0],
345
+ [0, 0, 0, 0, 0],
346
+ [0, 0, 0, 0, 0],
347
+ [0, 0, 0, 0, 0],
348
+ [0, 0, 0, 0, 0],
349
+ [0, 0, 0, 0, 0],
350
+ [0, 0, 0, 0, 0],
351
+ [0, 0, 0, 0, 0],
352
+ [0, 0, 0, 0, 0],
353
+ [0, 0, 0, 0, 0],
354
+ [0, 0, 0, 0, 0],
355
+ [0, 0, 0, 0, 0],
356
+ [0, 0, 0, 0, 0],
357
+ [0, 0, 0, 0, 0],
358
+ [0, 0, 0, 0, 0],
359
+ [0, 0, 0, 0, 0],
360
+ [0, 0, 0, 0, 0],
361
+ [0, 0, 0, 0, 0],
362
+ [0, 0, 0, 0, 0],
363
+ [0, 0, 0, 0, 0],
364
+ [0, 0, 0, 0, 0],
365
+ [0, 0, 0, 0, 0],
366
+ [0, 0, 0, 0, 0],
367
+ [0, 0, 0, 0, 0],
368
+ [1, 0, 1, 0, 164],
369
+ [0, 0, 0, 0, 0],
370
+ [0, 0, 0, 0, 0],
371
+ [1, 0, -1, 0, 161],
372
+ [0, 0, 0, 0, 0],
373
+ [0, 0, 0, 0, 0],
374
+ [0, 0, 0, 0, 0],
375
+ [0, 0, 0, 0, 0],
376
+ [0, 0, 0, 0, 0],
377
+ [0, 0, 0, 0, 0],
378
+ [0, 0, 0, 0, 0],
379
+ [0, 0, 0, 0, 0],
380
+ [1, 0, 0, 1, 152],
381
+ [0, 0, 0, 0, 0],
382
+ [0, 0, 0, 0, 0],
383
+ [0, 0, 0, 0, 0],
384
+ [0, 0, 0, 0, 0],
385
+ [0, 0, 0, 0, 0],
386
+ [0, 0, 0, 0, 0],
387
+ [1, 0, 0, 1, 145],
388
+ [1, 0, 0, 1, 144],
389
+ [0, 0, 0, 0, 0],
390
+ [0, 0, 0, 0, 0],
391
+ [0, 0, 0, 0, 0],
392
+ [0, 0, 0, 0, 0],
393
+ [0, 0, 0, 0, 0],
394
+ [0, 0, 0, 0, 0],
395
+ [1, 0, 0, -1, 137],
396
+ [0, 0, 0, 0, 0],
397
+ [0, 0, 0, 0, 0],
398
+ [0, 0, 0, 0, 0],
399
+ [1, 0, 1, 0, 133],
400
+ [1, 0, 1, 0, 132],
401
+ [1, 1, 0, 0, 131],
402
+ [1, 1, 0, 0, 130],
403
+ [0, 0, 0, 0, 0],
404
+ [0, 0, 0, 0, 0],
405
+ [0, 0, 0, 0, 0],
406
+ [0, 0, 0, 0, 0],
407
+ [0, 0, 0, 0, 0],
408
+ [0, 0, 0, 0, 0],
409
+ [0, 0, 0, 0, 0],
410
+ [0, 0, 0, 0, 0],
411
+ [0, 0, 0, 0, 0],
412
+ [0, 0, 0, 0, 0],
413
+ [0, 0, 0, 0, 0],
414
+ [0, 0, 0, 0, 0],
415
+ [0, 0, 0, 0, 0],
416
+ [0, 0, 0, 0, 0],
417
+ [0, 0, 0, 0, 0],
418
+ [0, 0, 0, 0, 0],
419
+ [0, 0, 0, 0, 0],
420
+ [0, 0, 0, 0, 0],
421
+ [0, 0, 0, 0, 0],
422
+ [0, 0, 0, 0, 0],
423
+ [0, 0, 0, 0, 0],
424
+ [0, 0, 0, 0, 0],
425
+ [0, 0, 0, 0, 0],
426
+ [0, 0, 0, 0, 0],
427
+ [0, 0, 0, 0, 0],
428
+ [0, 0, 0, 0, 0],
429
+ [0, 0, 0, 0, 0],
430
+ [0, 0, 0, 0, 0],
431
+ [0, 0, 0, 0, 0],
432
+ [1, 0, 0, 1, 100],
433
+ [0, 0, 0, 0, 0],
434
+ [1, 0, 0, 1, 98],
435
+ [0, 0, 0, 0, 0],
436
+ [1, 0, 0, 1, 96],
437
+ [0, 0, 0, 0, 0],
438
+ [0, 0, 0, 0, 0],
439
+ [0, 0, 0, 0, 0],
440
+ [0, 0, 0, 0, 0],
441
+ [0, 0, 0, 0, 0],
442
+ [0, 0, 0, 0, 0],
443
+ [0, 0, 0, 0, 0],
444
+ [1, 0, 1, 0, 88],
445
+ [0, 0, 0, 0, 0],
446
+ [0, 0, 0, 0, 0],
447
+ [0, 0, 0, 0, 0],
448
+ [0, 0, 0, 0, 0],
449
+ [0, 0, 0, 0, 0],
450
+ [1, 0, -1, 0, 82],
451
+ [0, 0, 0, 0, 0],
452
+ [0, 0, 0, 0, 0],
453
+ [0, 0, 0, 0, 0],
454
+ [0, 0, 0, 0, 0],
455
+ [0, 0, 0, 0, 0],
456
+ [0, 0, 0, 0, 0],
457
+ [0, 0, 0, 0, 0],
458
+ [1, 0, 1, 0, 74],
459
+ [0, 0, 0, 0, 0],
460
+ [1, 0, 1, 0, 72],
461
+ [0, 0, 0, 0, 0],
462
+ [1, 0, 0, -1, 70],
463
+ [0, 0, 0, 0, 0],
464
+ [0, 0, 0, 0, 0],
465
+ [1, -1, 0, 0, 67],
466
+ [0, 0, 0, 0, 0],
467
+ [1, -1, 0, 0, 65],
468
+ [0, 0, 0, 0, 0],
469
+ [0, 0, 0, 0, 0],
470
+ [0, 0, 0, 0, 0],
471
+ [0, 0, 0, 0, 0],
472
+ [0, 0, 0, 0, 0],
473
+ [0, 0, 0, 0, 0],
474
+ [0, 0, 0, 0, 0],
475
+ [0, 0, 0, 0, 0],
476
+ [1, 1, 0, 0, 56],
477
+ [0, 0, 0, 0, 0],
478
+ [0, 0, 0, 0, 0],
479
+ [0, 0, 0, 0, 0],
480
+ [1, -1, 0, 0, 52],
481
+ [0, 0, 0, 0, 0],
482
+ [0, 0, 0, 0, 0],
483
+ [0, 0, 0, 0, 0],
484
+ [0, 0, 0, 0, 0],
485
+ [0, 0, 0, 0, 0],
486
+ [0, 0, 0, 0, 0],
487
+ [0, 0, 0, 0, 0],
488
+ [1, 1, 0, 0, 44],
489
+ [0, 0, 0, 0, 0],
490
+ [0, 0, 0, 0, 0],
491
+ [0, 0, 0, 0, 0],
492
+ [1, 1, 0, 0, 40],
493
+ [0, 0, 0, 0, 0],
494
+ [1, 0, 0, -1, 38],
495
+ [1, 0, -1, 0, 37],
496
+ [0, 0, 0, 0, 0],
497
+ [0, 0, 0, 0, 0],
498
+ [0, 0, 0, 0, 0],
499
+ [1, 0, -1, 0, 33],
500
+ [0, 0, 0, 0, 0],
501
+ [0, 0, 0, 0, 0],
502
+ [0, 0, 0, 0, 0],
503
+ [0, 0, 0, 0, 0],
504
+ [1, -1, 0, 0, 28],
505
+ [0, 0, 0, 0, 0],
506
+ [1, 0, -1, 0, 26],
507
+ [1, 0, 0, -1, 25],
508
+ [0, 0, 0, 0, 0],
509
+ [0, 0, 0, 0, 0],
510
+ [0, 0, 0, 0, 0],
511
+ [0, 0, 0, 0, 0],
512
+ [1, -1, 0, 0, 20],
513
+ [0, 0, 0, 0, 0],
514
+ [1, 0, -1, 0, 18],
515
+ [0, 0, 0, 0, 0],
516
+ [0, 0, 0, 0, 0],
517
+ [0, 0, 0, 0, 0],
518
+ [0, 0, 0, 0, 0],
519
+ [0, 0, 0, 0, 0],
520
+ [0, 0, 0, 0, 0],
521
+ [0, 0, 0, 0, 0],
522
+ [0, 0, 0, 0, 0],
523
+ [1, 0, 0, -1, 9],
524
+ [0, 0, 0, 0, 0],
525
+ [0, 0, 0, 0, 0],
526
+ [1, 0, 0, -1, 6],
527
+ [0, 0, 0, 0, 0],
528
+ [0, 0, 0, 0, 0],
529
+ [0, 0, 0, 0, 0],
530
+ [0, 0, 0, 0, 0],
531
+ [0, 0, 0, 0, 0],
532
+ [0, 0, 0, 0, 0]
533
+ ]
534
+ tet_table = [
535
+ [-1, -1, -1, -1, -1, -1],
536
+ [0, 0, 0, 0, 0, 0],
537
+ [0, 0, 0, 0, 0, 0],
538
+ [1, 1, 1, 1, 1, 1],
539
+ [4, 4, 4, 4, 4, 4],
540
+ [0, 0, 0, 0, 0, 0],
541
+ [4, 0, 0, 4, 4, -1],
542
+ [1, 1, 1, 1, 1, 1],
543
+ [4, 4, 4, 4, 4, 4],
544
+ [0, 4, 0, 4, 4, -1],
545
+ [0, 0, 0, 0, 0, 0],
546
+ [1, 1, 1, 1, 1, 1],
547
+ [5, 5, 5, 5, 5, 5],
548
+ [0, 0, 0, 0, 0, 0],
549
+ [0, 0, 0, 0, 0, 0],
550
+ [1, 1, 1, 1, 1, 1],
551
+ [2, 2, 2, 2, 2, 2],
552
+ [0, 0, 0, 0, 0, 0],
553
+ [2, 0, 2, -1, 0, 2],
554
+ [1, 1, 1, 1, 1, 1],
555
+ [2, -1, 2, 4, 4, 2],
556
+ [0, 0, 0, 0, 0, 0],
557
+ [2, 0, 2, 4, 4, 2],
558
+ [1, 1, 1, 1, 1, 1],
559
+ [2, 4, 2, 4, 4, 2],
560
+ [0, 4, 0, 4, 4, 0],
561
+ [2, 0, 2, 0, 0, 2],
562
+ [1, 1, 1, 1, 1, 1],
563
+ [2, 5, 2, 5, 5, 2],
564
+ [0, 0, 0, 0, 0, 0],
565
+ [2, 0, 2, 0, 0, 2],
566
+ [1, 1, 1, 1, 1, 1],
567
+ [1, 1, 1, 1, 1, 1],
568
+ [0, 1, 1, -1, 0, 1],
569
+ [0, 0, 0, 0, 0, 0],
570
+ [2, 2, 2, 2, 2, 2],
571
+ [4, 1, 1, 4, 4, 1],
572
+ [0, 1, 1, 0, 0, 1],
573
+ [4, 0, 0, 4, 4, 0],
574
+ [2, 2, 2, 2, 2, 2],
575
+ [-1, 1, 1, 4, 4, 1],
576
+ [0, 1, 1, 4, 4, 1],
577
+ [0, 0, 0, 0, 0, 0],
578
+ [2, 2, 2, 2, 2, 2],
579
+ [5, 1, 1, 5, 5, 1],
580
+ [0, 1, 1, 0, 0, 1],
581
+ [0, 0, 0, 0, 0, 0],
582
+ [2, 2, 2, 2, 2, 2],
583
+ [1, 1, 1, 1, 1, 1],
584
+ [0, 0, 0, 0, 0, 0],
585
+ [0, 0, 0, 0, 0, 0],
586
+ [8, 8, 8, 8, 8, 8],
587
+ [1, 1, 1, 4, 4, 1],
588
+ [0, 0, 0, 0, 0, 0],
589
+ [4, 0, 0, 4, 4, 0],
590
+ [4, 4, 4, 4, 4, 4],
591
+ [1, 1, 1, 4, 4, 1],
592
+ [0, 4, 0, 4, 4, 0],
593
+ [0, 0, 0, 0, 0, 0],
594
+ [4, 4, 4, 4, 4, 4],
595
+ [1, 1, 1, 5, 5, 1],
596
+ [0, 0, 0, 0, 0, 0],
597
+ [0, 0, 0, 0, 0, 0],
598
+ [5, 5, 5, 5, 5, 5],
599
+ [6, 6, 6, 6, 6, 6],
600
+ [6, -1, 0, 6, 0, 6],
601
+ [6, 0, 0, 6, 0, 6],
602
+ [6, 1, 1, 6, 1, 6],
603
+ [4, 4, 4, 4, 4, 4],
604
+ [0, 0, 0, 0, 0, 0],
605
+ [4, 0, 0, 4, 4, 4],
606
+ [1, 1, 1, 1, 1, 1],
607
+ [6, 4, -1, 6, 4, 6],
608
+ [6, 4, 0, 6, 4, 6],
609
+ [6, 0, 0, 6, 0, 6],
610
+ [6, 1, 1, 6, 1, 6],
611
+ [5, 5, 5, 5, 5, 5],
612
+ [0, 0, 0, 0, 0, 0],
613
+ [0, 0, 0, 0, 0, 0],
614
+ [1, 1, 1, 1, 1, 1],
615
+ [2, 2, 2, 2, 2, 2],
616
+ [0, 0, 0, 0, 0, 0],
617
+ [2, 0, 2, 2, 0, 2],
618
+ [1, 1, 1, 1, 1, 1],
619
+ [2, 2, 2, 2, 2, 2],
620
+ [0, 0, 0, 0, 0, 0],
621
+ [2, 0, 2, 2, 2, 2],
622
+ [1, 1, 1, 1, 1, 1],
623
+ [2, 4, 2, 2, 4, 2],
624
+ [0, 4, 0, 4, 4, 0],
625
+ [2, 0, 2, 2, 0, 2],
626
+ [1, 1, 1, 1, 1, 1],
627
+ [2, 2, 2, 2, 2, 2],
628
+ [0, 0, 0, 0, 0, 0],
629
+ [0, 0, 0, 0, 0, 0],
630
+ [1, 1, 1, 1, 1, 1],
631
+ [6, 1, 1, 6, -1, 6],
632
+ [6, 1, 1, 6, 0, 6],
633
+ [6, 0, 0, 6, 0, 6],
634
+ [6, 2, 2, 6, 2, 6],
635
+ [4, 1, 1, 4, 4, 1],
636
+ [0, 1, 1, 0, 0, 1],
637
+ [4, 0, 0, 4, 4, 4],
638
+ [2, 2, 2, 2, 2, 2],
639
+ [6, 1, 1, 6, 4, 6],
640
+ [6, 1, 1, 6, 4, 6],
641
+ [6, 0, 0, 6, 0, 6],
642
+ [6, 2, 2, 6, 2, 6],
643
+ [5, 1, 1, 5, 5, 1],
644
+ [0, 1, 1, 0, 0, 1],
645
+ [0, 0, 0, 0, 0, 0],
646
+ [2, 2, 2, 2, 2, 2],
647
+ [1, 1, 1, 1, 1, 1],
648
+ [0, 0, 0, 0, 0, 0],
649
+ [0, 0, 0, 0, 0, 0],
650
+ [6, 6, 6, 6, 6, 6],
651
+ [1, 1, 1, 1, 1, 1],
652
+ [0, 0, 0, 0, 0, 0],
653
+ [0, 0, 0, 0, 0, 0],
654
+ [4, 4, 4, 4, 4, 4],
655
+ [1, 1, 1, 1, 4, 1],
656
+ [0, 4, 0, 4, 4, 0],
657
+ [0, 0, 0, 0, 0, 0],
658
+ [4, 4, 4, 4, 4, 4],
659
+ [1, 1, 1, 1, 1, 1],
660
+ [0, 0, 0, 0, 0, 0],
661
+ [0, 5, 0, 5, 0, 5],
662
+ [5, 5, 5, 5, 5, 5],
663
+ [5, 5, 5, 5, 5, 5],
664
+ [0, 5, 0, 5, 0, 5],
665
+ [-1, 5, 0, 5, 0, 5],
666
+ [1, 5, 1, 5, 1, 5],
667
+ [4, 5, -1, 5, 4, 5],
668
+ [0, 5, 0, 5, 0, 5],
669
+ [4, 5, 0, 5, 4, 5],
670
+ [1, 5, 1, 5, 1, 5],
671
+ [4, 4, 4, 4, 4, 4],
672
+ [0, 4, 0, 4, 4, 4],
673
+ [0, 0, 0, 0, 0, 0],
674
+ [1, 1, 1, 1, 1, 1],
675
+ [6, 6, 6, 6, 6, 6],
676
+ [0, 0, 0, 0, 0, 0],
677
+ [0, 0, 0, 0, 0, 0],
678
+ [1, 1, 1, 1, 1, 1],
679
+ [2, 5, 2, 5, -1, 5],
680
+ [0, 5, 0, 5, 0, 5],
681
+ [2, 5, 2, 5, 0, 5],
682
+ [1, 5, 1, 5, 1, 5],
683
+ [2, 5, 2, 5, 4, 5],
684
+ [0, 5, 0, 5, 0, 5],
685
+ [2, 5, 2, 5, 4, 5],
686
+ [1, 5, 1, 5, 1, 5],
687
+ [2, 4, 2, 4, 4, 2],
688
+ [0, 4, 0, 4, 4, 4],
689
+ [2, 0, 2, 0, 0, 2],
690
+ [1, 1, 1, 1, 1, 1],
691
+ [2, 6, 2, 6, 6, 2],
692
+ [0, 0, 0, 0, 0, 0],
693
+ [2, 0, 2, 0, 0, 2],
694
+ [1, 1, 1, 1, 1, 1],
695
+ [1, 1, 1, 1, 1, 1],
696
+ [0, 1, 1, 1, 0, 1],
697
+ [0, 0, 0, 0, 0, 0],
698
+ [2, 2, 2, 2, 2, 2],
699
+ [4, 1, 1, 1, 4, 1],
700
+ [0, 1, 1, 1, 0, 1],
701
+ [4, 0, 0, 4, 4, 0],
702
+ [2, 2, 2, 2, 2, 2],
703
+ [1, 1, 1, 1, 1, 1],
704
+ [0, 1, 1, 1, 1, 1],
705
+ [0, 0, 0, 0, 0, 0],
706
+ [2, 2, 2, 2, 2, 2],
707
+ [1, 1, 1, 1, 1, 1],
708
+ [0, 0, 0, 0, 0, 0],
709
+ [0, 0, 0, 0, 0, 0],
710
+ [2, 2, 2, 2, 2, 2],
711
+ [1, 1, 1, 1, 1, 1],
712
+ [0, 0, 0, 0, 0, 0],
713
+ [0, 0, 0, 0, 0, 0],
714
+ [5, 5, 5, 5, 5, 5],
715
+ [1, 1, 1, 1, 4, 1],
716
+ [0, 0, 0, 0, 0, 0],
717
+ [4, 0, 0, 4, 4, 0],
718
+ [4, 4, 4, 4, 4, 4],
719
+ [1, 1, 1, 1, 1, 1],
720
+ [0, 0, 0, 0, 0, 0],
721
+ [0, 0, 0, 0, 0, 0],
722
+ [4, 4, 4, 4, 4, 4],
723
+ [1, 1, 1, 1, 1, 1],
724
+ [6, 0, 0, 6, 0, 6],
725
+ [0, 0, 0, 0, 0, 0],
726
+ [6, 6, 6, 6, 6, 6],
727
+ [5, 5, 5, 5, 5, 5],
728
+ [5, 5, 0, 5, 0, 5],
729
+ [5, 5, 0, 5, 0, 5],
730
+ [5, 5, 1, 5, 1, 5],
731
+ [4, 4, 4, 4, 4, 4],
732
+ [0, 0, 0, 0, 0, 0],
733
+ [4, 4, 0, 4, 4, 4],
734
+ [1, 1, 1, 1, 1, 1],
735
+ [4, 4, 4, 4, 4, 4],
736
+ [4, 4, 0, 4, 4, 4],
737
+ [0, 0, 0, 0, 0, 0],
738
+ [1, 1, 1, 1, 1, 1],
739
+ [8, 8, 8, 8, 8, 8],
740
+ [0, 0, 0, 0, 0, 0],
741
+ [0, 0, 0, 0, 0, 0],
742
+ [1, 1, 1, 1, 1, 1],
743
+ [2, 2, 2, 2, 2, 2],
744
+ [0, 0, 0, 0, 0, 0],
745
+ [2, 2, 2, 2, 0, 2],
746
+ [1, 1, 1, 1, 1, 1],
747
+ [2, 2, 2, 2, 2, 2],
748
+ [0, 0, 0, 0, 0, 0],
749
+ [2, 2, 2, 2, 2, 2],
750
+ [1, 1, 1, 1, 1, 1],
751
+ [2, 2, 2, 2, 2, 2],
752
+ [0, 0, 0, 0, 0, 0],
753
+ [0, 0, 0, 0, 0, 0],
754
+ [4, 1, 1, 4, 4, 1],
755
+ [2, 2, 2, 2, 2, 2],
756
+ [0, 0, 0, 0, 0, 0],
757
+ [0, 0, 0, 0, 0, 0],
758
+ [1, 1, 1, 1, 1, 1],
759
+ [1, 1, 1, 1, 1, 1],
760
+ [1, 1, 1, 1, 0, 1],
761
+ [0, 0, 0, 0, 0, 0],
762
+ [2, 2, 2, 2, 2, 2],
763
+ [1, 1, 1, 1, 1, 1],
764
+ [0, 0, 0, 0, 0, 0],
765
+ [0, 0, 0, 0, 0, 0],
766
+ [2, 4, 2, 4, 4, 2],
767
+ [1, 1, 1, 1, 1, 1],
768
+ [1, 1, 1, 1, 1, 1],
769
+ [0, 0, 0, 0, 0, 0],
770
+ [2, 2, 2, 2, 2, 2],
771
+ [1, 1, 1, 1, 1, 1],
772
+ [0, 0, 0, 0, 0, 0],
773
+ [0, 0, 0, 0, 0, 0],
774
+ [2, 2, 2, 2, 2, 2],
775
+ [1, 1, 1, 1, 1, 1],
776
+ [0, 0, 0, 0, 0, 0],
777
+ [0, 0, 0, 0, 0, 0],
778
+ [5, 5, 5, 5, 5, 5],
779
+ [1, 1, 1, 1, 1, 1],
780
+ [0, 0, 0, 0, 0, 0],
781
+ [0, 0, 0, 0, 0, 0],
782
+ [4, 4, 4, 4, 4, 4],
783
+ [1, 1, 1, 1, 1, 1],
784
+ [0, 0, 0, 0, 0, 0],
785
+ [0, 0, 0, 0, 0, 0],
786
+ [4, 4, 4, 4, 4, 4],
787
+ [1, 1, 1, 1, 1, 1],
788
+ [0, 0, 0, 0, 0, 0],
789
+ [0, 0, 0, 0, 0, 0],
790
+ [12, 12, 12, 12, 12, 12]
791
+ ]
apps/third_party/CRM/util/utils.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import random
4
+
5
+
6
+ # Reworked so this matches gluPerspective / glm::perspective, using fovy
7
+ def perspective(fovx=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
8
+ # y = np.tan(fovy / 2)
9
+ x = np.tan(fovx / 2)
10
+ return torch.tensor([[1/x, 0, 0, 0],
11
+ [ 0, -aspect/x, 0, 0],
12
+ [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
13
+ [ 0, 0, -1, 0]], dtype=torch.float32, device=device)
14
+
15
+
16
+ def translate(x, y, z, device=None):
17
+ return torch.tensor([[1, 0, 0, x],
18
+ [0, 1, 0, y],
19
+ [0, 0, 1, z],
20
+ [0, 0, 0, 1]], dtype=torch.float32, device=device)
21
+
22
+
23
+ def rotate_x(a, device=None):
24
+ s, c = np.sin(a), np.cos(a)
25
+ return torch.tensor([[1, 0, 0, 0],
26
+ [0, c, -s, 0],
27
+ [0, s, c, 0],
28
+ [0, 0, 0, 1]], dtype=torch.float32, device=device)
29
+
30
+
31
+ def rotate_y(a, device=None):
32
+ s, c = np.sin(a), np.cos(a)
33
+ return torch.tensor([[ c, 0, s, 0],
34
+ [ 0, 1, 0, 0],
35
+ [-s, 0, c, 0],
36
+ [ 0, 0, 0, 1]], dtype=torch.float32, device=device)
37
+
38
+
39
+ def rotate_z(a, device=None):
40
+ s, c = np.sin(a), np.cos(a)
41
+ return torch.tensor([[c, -s, 0, 0],
42
+ [s, c, 0, 0],
43
+ [0, 0, 1, 0],
44
+ [0, 0, 0, 1]], dtype=torch.float32, device=device)
45
+
46
+ @torch.no_grad()
47
+ def batch_random_rotation_translation(b, t, device=None):
48
+ m = np.random.normal(size=[b, 3, 3])
49
+ m[:, 1] = np.cross(m[:, 0], m[:, 2])
50
+ m[:, 2] = np.cross(m[:, 0], m[:, 1])
51
+ m = m / np.linalg.norm(m, axis=2, keepdims=True)
52
+ m = np.pad(m, [[0, 0], [0, 1], [0, 1]], mode='constant')
53
+ m[:, 3, 3] = 1.0
54
+ m[:, :3, 3] = np.random.uniform(-t, t, size=[b, 3])
55
+ return torch.tensor(m, dtype=torch.float32, device=device)
56
+
57
+ @torch.no_grad()
58
+ def random_rotation_translation(t, device=None):
59
+ m = np.random.normal(size=[3, 3])
60
+ m[1] = np.cross(m[0], m[2])
61
+ m[2] = np.cross(m[0], m[1])
62
+ m = m / np.linalg.norm(m, axis=1, keepdims=True)
63
+ m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
64
+ m[3, 3] = 1.0
65
+ m[:3, 3] = np.random.uniform(-t, t, size=[3])
66
+ return torch.tensor(m, dtype=torch.float32, device=device)
67
+
68
+
69
+ @torch.no_grad()
70
+ def random_rotation(device=None):
71
+ m = np.random.normal(size=[3, 3])
72
+ m[1] = np.cross(m[0], m[2])
73
+ m[2] = np.cross(m[0], m[1])
74
+ m = m / np.linalg.norm(m, axis=1, keepdims=True)
75
+ m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
76
+ m[3, 3] = 1.0
77
+ m[:3, 3] = np.array([0,0,0]).astype(np.float32)
78
+ return torch.tensor(m, dtype=torch.float32, device=device)
79
+
80
+
81
+ def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
82
+ return torch.sum(x*y, -1, keepdim=True)
83
+
84
+
85
+ def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
86
+ return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
87
+
88
+
89
+ def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
90
+ return x / length(x, eps)
91
+
92
+
93
+ def lr_schedule(iter, warmup_iter, scheduler_decay):
94
+ if iter < warmup_iter:
95
+ return iter / warmup_iter
96
+ return max(0.0, 10 ** (
97
+ -(iter - warmup_iter) * scheduler_decay))
98
+
99
+
100
+ def trans_depth(depth):
101
+ depth = depth[0].detach().cpu().numpy()
102
+ valid = depth > 0
103
+ depth[valid] -= depth[valid].min()
104
+ depth[valid] = ((depth[valid] / depth[valid].max()) * 255)
105
+ return depth.astype('uint8')
106
+
107
+
108
+ def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None):
109
+ assert isinstance(input, torch.Tensor)
110
+ if posinf is None:
111
+ posinf = torch.finfo(input.dtype).max
112
+ if neginf is None:
113
+ neginf = torch.finfo(input.dtype).min
114
+ assert nan == 0
115
+ return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
116
+
117
+
118
+ def load_item(filepath):
119
+ with open(filepath, 'r') as f:
120
+ items = [name.strip() for name in f.readlines()]
121
+ return set(items)
122
+
123
+ def load_prompt(filepath):
124
+ uuid2prompt = {}
125
+ with open(filepath, 'r') as f:
126
+ for line in f.readlines():
127
+ list_line = line.split(',')
128
+ uuid2prompt[list_line[0]] = ','.join(list_line[1:]).strip()
129
+ return uuid2prompt
130
+
131
+ def resize_and_center_image(image_tensor, scale=0.95, c = 0, shift = 0, rgb=False, aug_shift = 0):
132
+ if scale == 1:
133
+ return image_tensor
134
+ B, C, H, W = image_tensor.shape
135
+ new_H, new_W = int(H * scale), int(W * scale)
136
+ resized_image = torch.nn.functional.interpolate(image_tensor, size=(new_H, new_W), mode='bilinear', align_corners=False).squeeze(0)
137
+ background = torch.zeros_like(image_tensor) + c
138
+ start_y, start_x = (H - new_H) // 2, (W - new_W) // 2
139
+ if shift == 0:
140
+ background[:, :, start_y:start_y + new_H, start_x:start_x + new_W] = resized_image
141
+ else:
142
+ for i in range(B):
143
+ randx = random.randint(-shift, shift)
144
+ randy = random.randint(-shift, shift)
145
+ if rgb == True:
146
+ if i == 0 or i==2 or i==4:
147
+ randx = 0
148
+ randy = 0
149
+ background[i, :, start_y+randy:start_y + new_H+randy, start_x+randx:start_x + new_W+randx] = resized_image[i]
150
+ if aug_shift == 0:
151
+ return background
152
+ for i in range(B):
153
+ for j in range(C):
154
+ background[i, j, :, :] += (random.random() - 0.5)*2 * aug_shift / 255
155
+ return background
156
+
157
+ def get_tri(triview_color, dim = 1, blender=True, c = 0, scale=0.95, shift = 0, fix = False, rgb=False, aug_shift = 0):
158
+ # triview_color: [6,C,H,W]
159
+ # rgb is useful when shift is not 0
160
+ triview_color = resize_and_center_image(triview_color, scale=scale, c = c, shift=shift,rgb=rgb, aug_shift = aug_shift)
161
+ if blender is False:
162
+ triview_color0 = torch.rot90(triview_color[0],k=2,dims=[1,2])
163
+ triview_color1 = torch.rot90(triview_color[4],k=1,dims=[1,2]).flip(2).flip(1)
164
+ triview_color2 = torch.rot90(triview_color[5],k=1,dims=[1,2]).flip(2)
165
+ triview_color3 = torch.rot90(triview_color[3],k=2,dims=[1,2]).flip(2)
166
+ triview_color4 = torch.rot90(triview_color[1],k=3,dims=[1,2]).flip(1)
167
+ triview_color5 = torch.rot90(triview_color[2],k=3,dims=[1,2]).flip(1).flip(2)
168
+ else:
169
+ triview_color0 = torch.rot90(triview_color[2],k=2,dims=[1,2])
170
+ triview_color1 = torch.rot90(triview_color[4],k=0,dims=[1,2]).flip(2).flip(1)
171
+ triview_color2 = torch.rot90(torch.rot90(triview_color[0],k=3,dims=[1,2]).flip(2), k=2,dims=[1,2])
172
+ triview_color3 = torch.rot90(torch.rot90(triview_color[5],k=2,dims=[1,2]).flip(2), k=2,dims=[1,2])
173
+ triview_color4 = torch.rot90(triview_color[1],k=2,dims=[1,2]).flip(1).flip(1).flip(2)
174
+ triview_color5 = torch.rot90(triview_color[3],k=1,dims=[1,2]).flip(1).flip(2)
175
+ if fix == True:
176
+ triview_color0[1] = triview_color0[1] * 0
177
+ triview_color0[2] = triview_color0[2] * 0
178
+ triview_color3[1] = triview_color3[1] * 0
179
+ triview_color3[2] = triview_color3[2] * 0
180
+
181
+ triview_color1[0] = triview_color1[0] * 0
182
+ triview_color1[1] = triview_color1[1] * 0
183
+ triview_color4[0] = triview_color4[0] * 0
184
+ triview_color4[1] = triview_color4[1] * 0
185
+
186
+ triview_color2[0] = triview_color2[0] * 0
187
+ triview_color2[2] = triview_color2[2] * 0
188
+ triview_color5[0] = triview_color5[0] * 0
189
+ triview_color5[2] = triview_color5[2] * 0
190
+ color_tensor1_gt = torch.cat((triview_color0, triview_color1, triview_color2), dim=2)
191
+ color_tensor2_gt = torch.cat((triview_color3, triview_color4, triview_color5), dim=2)
192
+ color_tensor_gt = torch.cat((color_tensor1_gt, color_tensor2_gt), dim = dim)
193
+ return color_tensor_gt
194
+