import random import torch import torch.nn as nn import numpy as np from PIL import Image from dataclasses import dataclass from torchvision.transforms import Normalize from torchvision.transforms import InterpolationMode from torchvision.transforms.transforms import _interpolation_modes_from_int from transformers import CLIPModel, CLIPTokenizer, CLIPImageProcessor from transformers.utils import ModelOutput from typing import Iterable, Optional, Union, List import craftsman from craftsman.utils.base import BaseModule from craftsman.utils.typing import * ImageType = Union[np.ndarray, torch.Tensor, Image.Image] class BaseEmbedder(BaseModule): @dataclass class Config(BaseModule.Config): pretrained_model_name_or_path: Optional[str] = None # the pretrained model name or path encode_camera: bool = False # whether to encode camera camera_embeds_type: str = "sincos" # the type of camera embeds camera_embeds_dim: Optional[int] = None # the dimension of camera embeds n_views: int = 1 # the number of views empty_embeds_ratio: float = 0.1 # the ratio of empty embeds zero_uncond_embeds: bool = True normalize_embeds: bool = False # whether to normalize the embeds cfg: Config def configure(self) -> None: super().configure() if self.cfg.encode_camera: self.distance = 1.0 self.register_buffer( "cameras", torch.as_tensor([ [[1, 0, 0, 0], [0, 0, -1, -self.distance], [0, 1, 0, 0], [0, 0, 0, 1]], # front to back [[0, 0, 1, self.distance], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]], # right to left [[-1, 0, 0, 0], [0, 0, 1, self.distance], [0, 1, 0, 0], [0, 0, 0, 1]], # back to front [[0, 0, -1, -self.distance], [-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]], # left to right ], dtype=torch.float32), ) def encode_image(self, images: Iterable[Optional[ImageType]], camera_embeds: Optional[torch.Tensor] = None, **kwargs) -> torch.FloatTensor: pass def encode_camera(self, c2ws: torch.Tensor): if self.cfg.camera_embeds_type == "sincos": assert c2ws.shape[-1] == 4 and c2ws.shape[-2] == 4, f"Invalid c2ws shape: {c2ws.shape}" c2ws = c2ws.view(-1, 16) return torch.cat([torch.sin(c2ws), torch.cos(c2ws)], dim=-1) else: raise NotImplementedError(f"Unknown camera_embeds_type: {self.cfg.camera_embeds_type}") def post_process_embeds(self, visual_embeds): bs =visual_embeds.shape[0] if self.cfg.normalize_embeds: # post-process the visual embeds if visual_embeds is not None: visual_embeds = visual_embeds / visual_embeds.norm(dim=-1, keepdim=True) assert visual_embeds is not None # return visual_embeds return visual_embeds def forward(self, batch): if batch["image"].dim() == 5: bs = batch["image"].shape[0] * batch["image"].shape[1] else: bs = batch["image"].shape[0] visual_embeds = None if random.random() < self.cfg.empty_embeds_ratio: if "image" in batch or "image_embeds" in batch: visual_embeds = self.empty_image_embeds.repeat(bs, 1, 1) elif "mvimages" in batch or "mvimage_embeds" in batch: visual_embeds = self.empty_image_embeds.unsqueeze(1).repeat(bs, 1, 1, 1) else: # for visual inputs if "image" in batch: if self.cfg.encode_camera: visual_embeds = self.encode_image(batch["image"], cameras=batch["c2w"]) else: visual_embeds = self.encode_image(batch["image"]) elif "mvimages" in batch: n_views = batch["mvimages"].shape[1] if self.cfg.encode_camera: visual_embeds = self.encode_image( batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:]), \ cameras=batch["c2ws"]).view(bs, n_views, *self.empty_image_embeds.shape[-2:]) else: visual_embeds = self.encode_image( batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:])).view(bs, n_views, *self.empty_image_embeds.shape[-2:]) return self.post_process_embeds(visual_embeds)