Spaces:
Runtime error
Runtime error
import os,re,logging | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
import pdb | |
if os.path.exists("./gweight.txt"): | |
with open("./gweight.txt", 'r',encoding="utf-8") as file: | |
gweight_data = file.read() | |
gpt_path = os.environ.get( | |
"gpt_path", gweight_data) | |
else: | |
gpt_path = os.environ.get( | |
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
if os.path.exists("./sweight.txt"): | |
with open("./sweight.txt", 'r',encoding="utf-8") as file: | |
sweight_data = file.read() | |
sovits_path = os.environ.get("sovits_path", sweight_data) | |
else: | |
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") | |
# gpt_path = os.environ.get( | |
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
# ) | |
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
) | |
bert_path = os.environ.get( | |
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
infer_ttswebui = int(infer_ttswebui) | |
is_share = os.environ.get("is_share", "False") | |
is_share=eval(is_share) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half = eval(os.environ.get("is_half", "True")) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
import librosa,torch | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path=cnhubert_base_path | |
import sys | |
from PyQt5.QtCore import QEvent | |
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit | |
from PyQt5.QtWidgets import QGridLayout, QVBoxLayout, QWidget, QFileDialog, QStatusBar, QComboBox | |
import soundfile as sf | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from time import time as ttime | |
from module.mel_processing import spectrogram_torch | |
from my_utils import load_audio | |
from tools.i18n.i18n import I18nAuto | |
i18n = I18nAuto() | |
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def change_sovits_weights(sovits_path): | |
global vq_model,hps | |
dict_s2=torch.load(sovits_path,map_location="cpu") | |
hps=dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if("pretrained"not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
with open("./sweight.txt","w",encoding="utf-8")as f:f.write(sovits_path) | |
change_sovits_weights(sovits_path) | |
def change_gpt_weights(gpt_path): | |
global hz,max_sec,t2s_model,config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
with open("./gweight.txt","w",encoding="utf-8")as f:f.write(gpt_path) | |
change_gpt_weights(gpt_path) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language={ | |
i18n("中文"):"zh", | |
i18n("英文"):"en", | |
i18n("日文"):"ja" | |
} | |
def splite_en_inf(sentence, language): | |
pattern = re.compile(r'[a-zA-Z. ]+') | |
textlist = [] | |
langlist = [] | |
pos = 0 | |
for match in pattern.finditer(sentence): | |
start, end = match.span() | |
if start > pos: | |
textlist.append(sentence[pos:start]) | |
langlist.append(language) | |
textlist.append(sentence[start:end]) | |
langlist.append("en") | |
pos = end | |
if pos < len(sentence): | |
textlist.append(sentence[pos:]) | |
langlist.append(language) | |
return textlist, langlist | |
def clean_text_inf(text, language): | |
phones, word2ph, norm_text = clean_text(text, language) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def nonen_clean_text_inf(text, language): | |
textlist, langlist = splite_en_inf(text, language) | |
phones_list = [] | |
word2ph_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
phones_list.append(phones) | |
if lang == "en" or "ja": | |
pass | |
else: | |
word2ph_list.append(word2ph) | |
norm_text_list.append(norm_text) | |
print(word2ph_list) | |
phones = sum(phones_list, []) | |
word2ph = sum(word2ph_list, []) | |
norm_text = ' '.join(norm_text_list) | |
return phones, word2ph, norm_text | |
def nonen_get_bert_inf(text, language): | |
textlist, langlist = splite_en_inf(text, language) | |
print(textlist) | |
print(langlist) | |
bert_list = [] | |
for i in range(len(textlist)): | |
text = textlist[i] | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(text, lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
return bert | |
splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",} | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,how_to_cut=i18n("不切")): | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
if(prompt_text[-1]not in splits):prompt_text+="。"if prompt_text!="en"else "." | |
text = text.strip("\n") | |
if(len(get_first(text))<4):text+="。"if text!="en"else "." | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if(wav16k.shape[0]>160000 or wav16k.shape[0]<48000): | |
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k=torch.cat([wav16k,zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
if prompt_language == "en": | |
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language) | |
else: | |
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language) | |
if(how_to_cut==i18n("凑四句一切")):text=cut1(text) | |
elif(how_to_cut==i18n("凑50字一切")):text=cut2(text) | |
elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text) | |
elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text) | |
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n") | |
if(text[-1]not in splits):text+="。"if text_language!="en"else "." | |
texts=text.split("\n") | |
audio_opt = [] | |
if prompt_language == "en": | |
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language) | |
else: | |
bert1 = nonen_get_bert_inf(prompt_text, prompt_language) | |
for text in texts: | |
# 解决输入目标文本的空行导致报错的问题 | |
if (len(text.strip()) == 0): | |
continue | |
if text_language == "en": | |
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language) | |
else: | |
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language) | |
if text_language == "en": | |
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language) | |
else: | |
bert2 = nonen_get_bert_inf(text, text_language) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
np.int16 | |
) | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts)>1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")]) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s." % item for item in inp.strip(".").split(".")]) | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split('(\d+)', s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def change_choices(): | |
SoVITS_names, GPT_names = get_weights_names() | |
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"} | |
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth" | |
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
SoVITS_weight_root="SoVITS_weights" | |
GPT_weight_root="GPT_weights" | |
os.makedirs(SoVITS_weight_root,exist_ok=True) | |
os.makedirs(GPT_weight_root,exist_ok=True) | |
def get_weights_names(): | |
SoVITS_names = [pretrained_sovits_name] | |
for name in os.listdir(SoVITS_weight_root): | |
if name.endswith(".pth"):SoVITS_names.append("%s/%s"%(SoVITS_weight_root,name)) | |
GPT_names = [pretrained_gpt_name] | |
for name in os.listdir(GPT_weight_root): | |
if name.endswith(".ckpt"): GPT_names.append("%s/%s"%(GPT_weight_root,name)) | |
return SoVITS_names,GPT_names | |
SoVITS_names,GPT_names = get_weights_names() | |
class GPTSoVITSGUI(QMainWindow): | |
def __init__(self): | |
super().__init__() | |
self.init_ui() | |
def init_ui(self): | |
self.setWindowTitle('GPT-SoVITS GUI') | |
self.setGeometry(800, 450, 950, 850) | |
self.setStyleSheet(""" | |
QWidget { | |
background-color: #a3d3b1; | |
} | |
QTabWidget::pane { | |
background-color: #a3d3b1; | |
} | |
QTabWidget::tab-bar { | |
alignment: left; | |
} | |
QTabBar::tab { | |
background: #8da4bf; | |
color: #ffffff; | |
padding: 8px; | |
} | |
QTabBar::tab:selected { | |
background: #2a3f54; | |
} | |
QLabel { | |
color: #000000; | |
} | |
QPushButton { | |
background-color: #4CAF50; | |
color: white; | |
padding: 8px; | |
border: 1px solid #4CAF50; | |
border-radius: 4px; | |
} | |
QPushButton:hover { | |
background-color: #45a049; | |
border: 1px solid #45a049; | |
box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.1); | |
} | |
""") | |
license_text = ( | |
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. " | |
"如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") | |
license_label = QLabel(license_text) | |
license_label.setWordWrap(True) | |
self.GPT_model_label = QLabel("选择GPT模型:") | |
self.GPT_model_input = QLineEdit() | |
self.GPT_model_input.setPlaceholderText("拖拽或选择文件") | |
self.GPT_model_input.setReadOnly(True) | |
self.GPT_model_button = QPushButton("选择GPT模型文件") | |
self.GPT_model_button.clicked.connect(self.select_GPT_model) | |
self.SoVITS_model_label = QLabel("选择SoVITS模型:") | |
self.SoVITS_model_input = QLineEdit() | |
self.SoVITS_model_input.setPlaceholderText("拖拽或选择文件") | |
self.SoVITS_model_input.setReadOnly(True) | |
self.SoVITS_model_button = QPushButton("选择SoVITS模型文件") | |
self.SoVITS_model_button.clicked.connect(self.select_SoVITS_model) | |
self.ref_audio_label = QLabel("上传参考音频:") | |
self.ref_audio_input = QLineEdit() | |
self.ref_audio_input.setPlaceholderText("拖拽或选择文件") | |
self.ref_audio_input.setReadOnly(True) | |
self.ref_audio_button = QPushButton("选择音频文件") | |
self.ref_audio_button.clicked.connect(self.select_ref_audio) | |
self.ref_text_label = QLabel("参考音频文本:") | |
self.ref_text_input = QLineEdit() | |
self.ref_text_input.setPlaceholderText("拖拽或选择文件") | |
self.ref_text_input.setReadOnly(True) | |
self.ref_text_button = QPushButton("上传文本") | |
self.ref_text_button.clicked.connect(self.upload_ref_text) | |
self.language_label = QLabel("参考音频语言:") | |
self.language_combobox = QComboBox() | |
self.language_combobox.addItems(["中文", "英文", "日文"]) | |
self.target_text_label = QLabel("合成目标文本:") | |
self.target_text_input = QLineEdit() | |
self.target_text_input.setPlaceholderText("拖拽或选择文件") | |
self.target_text_input.setReadOnly(True) | |
self.target_text_button = QPushButton("上传文本") | |
self.target_text_button.clicked.connect(self.upload_target_text) | |
self.language_label_02 = QLabel("合成音频语言:") | |
self.language_combobox_02 = QComboBox() | |
self.language_combobox_02.addItems(["中文", "英文", "日文"]) | |
self.output_label = QLabel("输出音频路径:") | |
self.output_input = QLineEdit() | |
self.output_input.setPlaceholderText("拖拽或选择文件") | |
self.output_input.setReadOnly(True) | |
self.output_button = QPushButton("选择文件夹") | |
self.output_button.clicked.connect(self.select_output_path) | |
self.output_text = QTextEdit() | |
self.output_text.setReadOnly(True) | |
self.add_drag_drop_events([ | |
self.GPT_model_input, | |
self.SoVITS_model_input, | |
self.ref_audio_input, | |
self.ref_text_input, | |
self.target_text_input, | |
self.output_input, | |
]) | |
self.synthesize_button = QPushButton("合成") | |
self.synthesize_button.clicked.connect(self.synthesize) | |
self.status_bar = QStatusBar() | |
main_layout = QVBoxLayout() | |
input_layout = QGridLayout() | |
input_layout.setSpacing(10) | |
self.setLayout(input_layout) | |
input_layout.addWidget(license_label, 0, 0, 1, 3) | |
input_layout.addWidget(self.GPT_model_label, 1, 0) | |
input_layout.addWidget(self.GPT_model_input, 2, 0, 1, 2) | |
input_layout.addWidget(self.GPT_model_button, 2, 2) | |
input_layout.addWidget(self.SoVITS_model_label, 3, 0) | |
input_layout.addWidget(self.SoVITS_model_input, 4, 0, 1, 2) | |
input_layout.addWidget(self.SoVITS_model_button, 4, 2) | |
input_layout.addWidget(self.ref_audio_label, 5, 0) | |
input_layout.addWidget(self.ref_audio_input, 6, 0, 1, 2) | |
input_layout.addWidget(self.ref_audio_button, 6, 2) | |
input_layout.addWidget(self.language_label, 7, 0) | |
input_layout.addWidget(self.language_combobox, 8, 0, 1, 1) | |
input_layout.addWidget(self.ref_text_label, 9, 0) | |
input_layout.addWidget(self.ref_text_input, 10, 0, 1, 2) | |
input_layout.addWidget(self.ref_text_button, 10, 2) | |
input_layout.addWidget(self.language_label_02, 11, 0) | |
input_layout.addWidget(self.language_combobox_02, 12, 0, 1, 1) | |
input_layout.addWidget(self.target_text_label, 13, 0) | |
input_layout.addWidget(self.target_text_input, 14, 0, 1, 2) | |
input_layout.addWidget(self.target_text_button, 14, 2) | |
input_layout.addWidget(self.output_label, 15, 0) | |
input_layout.addWidget(self.output_input, 16, 0, 1, 2) | |
input_layout.addWidget(self.output_button, 16, 2) | |
main_layout.addLayout(input_layout) | |
output_layout = QVBoxLayout() | |
output_layout.addWidget(self.output_text) | |
main_layout.addLayout(output_layout) | |
main_layout.addWidget(self.synthesize_button) | |
main_layout.addWidget(self.status_bar) | |
self.central_widget = QWidget() | |
self.central_widget.setLayout(main_layout) | |
self.setCentralWidget(self.central_widget) | |
def dragEnterEvent(self, event): | |
if event.mimeData().hasUrls(): | |
event.acceptProposedAction() | |
def dropEvent(self, event): | |
if event.mimeData().hasUrls(): | |
file_paths = [url.toLocalFile() for url in event.mimeData().urls()] | |
if len(file_paths) == 1: | |
self.update_ref_audio(file_paths[0]) | |
self.update_input_paths(self.ref_audio_input, file_paths[0]) | |
else: | |
self.update_ref_audio(", ".join(file_paths)) | |
def add_drag_drop_events(self, widgets): | |
for widget in widgets: | |
widget.setAcceptDrops(True) | |
widget.installEventFilter(self) | |
def eventFilter(self, obj, event): | |
if event.type() == QEvent.DragEnter: | |
mime_data = event.mimeData() | |
if mime_data.hasUrls(): | |
event.acceptProposedAction() | |
elif event.type() == QEvent.Drop: | |
mime_data = event.mimeData() | |
if mime_data.hasUrls(): | |
file_paths = [url.toLocalFile() for url in mime_data.urls()] | |
if len(file_paths) == 1: | |
self.update_input_paths(obj, file_paths[0]) | |
else: | |
self.update_input_paths(obj, ", ".join(file_paths)) | |
event.acceptProposedAction() | |
return super().eventFilter(obj, event) | |
def select_GPT_model(self): | |
file_path, _ = QFileDialog.getOpenFileName(self, "选择GPT模型文件", "", "GPT Files (*.ckpt)") | |
if file_path: | |
self.GPT_model_input.setText(file_path) | |
def select_SoVITS_model(self): | |
file_path, _ = QFileDialog.getOpenFileName(self, "选择SoVITS模型文件", "", "SoVITS Files (*.pth)") | |
if file_path: | |
self.SoVITS_model_input.setText(file_path) | |
def select_ref_audio(self): | |
options = QFileDialog.Options() | |
options |= QFileDialog.DontUseNativeDialog | |
options |= QFileDialog.ShowDirsOnly | |
file_dialog = QFileDialog() | |
file_dialog.setOptions(options) | |
file_dialog.setFileMode(QFileDialog.AnyFile) | |
file_dialog.setNameFilter("Audio Files (*.wav *.mp3)") | |
if file_dialog.exec_(): | |
file_paths = file_dialog.selectedFiles() | |
if len(file_paths) == 1: | |
self.update_ref_audio(file_paths[0]) | |
self.update_input_paths(self.ref_audio_input, file_paths[0]) | |
else: | |
self.update_ref_audio(", ".join(file_paths)) | |
def upload_ref_text(self): | |
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)") | |
if file_path: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
content = file.read() | |
self.ref_text_input.setText(content) | |
self.update_input_paths(self.ref_text_input, file_path) | |
def upload_target_text(self): | |
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)") | |
if file_path: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
content = file.read() | |
self.target_text_input.setText(content) | |
self.update_input_paths(self.target_text_input, file_path) | |
def select_output_path(self): | |
options = QFileDialog.Options() | |
options |= QFileDialog.DontUseNativeDialog | |
options |= QFileDialog.ShowDirsOnly | |
folder_dialog = QFileDialog() | |
folder_dialog.setOptions(options) | |
folder_dialog.setFileMode(QFileDialog.Directory) | |
if folder_dialog.exec_(): | |
folder_path = folder_dialog.selectedFiles()[0] | |
self.output_input.setText(folder_path) | |
def update_ref_audio(self, file_path): | |
self.ref_audio_input.setText(file_path) | |
def update_input_paths(self, input_box, file_path): | |
input_box.setText(file_path) | |
def synthesize(self): | |
GPT_model_path = self.GPT_model_input.text() | |
SoVITS_model_path = self.SoVITS_model_input.text() | |
ref_audio_path = self.ref_audio_input.text() | |
language_combobox = self.language_combobox.currentText() | |
language_combobox = i18n(language_combobox) | |
ref_text = self.ref_text_input.text() | |
language_combobox_02 = self.language_combobox_02.currentText() | |
language_combobox_02 = i18n(language_combobox_02) | |
target_text = self.target_text_input.text() | |
output_path = self.output_input.text() | |
change_gpt_weights(gpt_path=GPT_model_path) | |
change_sovits_weights(sovits_path=SoVITS_model_path) | |
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path, | |
prompt_text=ref_text, | |
prompt_language=language_combobox, | |
text=target_text, | |
text_language=language_combobox_02) | |
result_list = list(synthesis_result) | |
if result_list: | |
last_sampling_rate, last_audio_data = result_list[-1] | |
output_wav_path = os.path.join(output_path, "output.wav") | |
sf.write(output_wav_path, last_audio_data, last_sampling_rate) | |
result = "Audio saved to " + output_wav_path | |
self.status_bar.showMessage("合成完成!输出路径:" + output_wav_path, 5000) | |
self.output_text.append("处理结果:\n" + result) | |
def main(): | |
app = QApplication(sys.argv) | |
mainWin = GPTSoVITSGUI() | |
mainWin.show() | |
sys.exit(app.exec_()) | |
if __name__ == '__main__': | |
main() | |