Spaces:
No application file
No application file
""" | |
Sample from a trained model | |
""" | |
import os | |
import pickle | |
from contextlib import nullcontext | |
import torch | |
import tiktoken | |
from model import GPTConfig, GPT | |
import streamlit as st | |
# ----------------------------------------------------------------------------- | |
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl') | |
out_dir = 'out-gushi-char' # ignored if init_from is not 'resume' | |
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" | |
num_samples = 1 # number of samples to draw | |
max_new_tokens = 500 # number of tokens generated in each sample | |
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions | |
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability | |
seed = 1337 | |
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. | |
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' | |
compile = False # use PyTorch 2.0 to compile the model to be faster | |
exec(open('configurator.py').read()) # overrides from command line or config file | |
# ----------------------------------------------------------------------------- | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast | |
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
# model | |
if init_from == 'resume': | |
# init from a model saved in a specific directory | |
ckpt_path = os.path.join(out_dir, 'ckpt.pt') | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
gptconf = GPTConfig(**checkpoint['model_args']) | |
model = GPT(gptconf) | |
state_dict = checkpoint['model'] | |
unwanted_prefix = '_orig_mod.' | |
for k,v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
model.load_state_dict(state_dict) | |
elif init_from.startswith('gpt2'): | |
# init from a given GPT-2 model | |
model = GPT.from_pretrained(init_from, dict(dropout=0.0)) | |
model.eval() | |
model.to(device) | |
if compile: | |
model = torch.compile(model) # requires PyTorch 2.0 (optional) | |
# look for the meta pickle in case it is available in the dataset folder | |
load_meta = False | |
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these... | |
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl') | |
load_meta = os.path.exists(meta_path) | |
if load_meta: | |
print(f"Loading meta from {meta_path}...") | |
with open(meta_path, 'rb') as f: | |
meta = pickle.load(f) | |
# TODO want to make this more general to arbitrary encoder/decoder schemes | |
stoi, itos = meta['stoi'], meta['itos'] | |
encode = lambda s: [stoi[c] for c in s] | |
decode = lambda l: ''.join([itos[i] for i in l]) | |
else: | |
# ok let's assume gpt-2 encodings by default | |
print("No meta.pkl found, assuming GPT-2 encodings...") | |
enc = tiktoken.get_encoding("gpt2") | |
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"}) | |
decode = lambda l: enc.decode(l) | |
# encode the beginning of the prompt | |
if start.startswith('FILE:'): | |
with open(start[5:], 'r', encoding='utf-8') as f: | |
start = f.read() | |
start_ids = encode(start) | |
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) | |
def main(): | |
st.header("古诗词GPT") | |
# run generation | |
with torch.no_grad(): | |
with ctx: | |
for k in range(num_samples): | |
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) | |
st.write(decode(y[0].tolist())) | |
st.write('---------------') | |
if __name__ == "__main__": | |
main() |