"""Simple example of running the Umshini debate environment locally using ChatArena agents. This can be used to test strategies before participating in a tournament.""" from chatarena.agent import Player from chatarena.backends import OpenAIChat from chatarena.environments.umshini.pettingzoo_wrapper import PettingZooCompatibilityV0 from docs.tutorials.umshini.debate_chatarena_prompts import proponent_description, opponent_description env = PettingZooCompatibilityV0(env_name="debate", topic="Student loan debt should be forgiven", render_mode="human") env.reset() # Set ChatArena global prompt to be the same as the initial observation (hard coded moderator message) global_prompt = env.observe(env.agent_selection) # Moderator is handled internally in our environment, rather than with ChatArena player1 = Player( name="Opponent", backend=OpenAIChat(), role_desc=proponent_description, global_prompt=global_prompt, ) player2 = Player( name="Proponent", backend=OpenAIChat(), role_desc=opponent_description, global_prompt=global_prompt, ) agent_player_mapping = dict(zip(env.possible_agents, [player1, player2])) for agent in env.agent_iter(): observation, reward, termination, truncation, info = env.last() if termination or truncation: break # Optional: Use extra information encoded in info dict messages = info.get("new_messages") player_name = info.get("player_name") # this can be used to track which player's turn it is (see LangChain debate tutorial) # Use a basic ChatArena agent to generate a response chatarena_agent = agent_player_mapping[agent] response = chatarena_agent(messages) env.step(response)