"""Simple example of running the Umshini debate environment locally using LangChain agents. This can be used to test agents before participating in a tournament.""" from langchain import OpenAI from langchain.agents import AgentType, initialize_agent from langchain.memory import ConversationBufferMemory from chatarena.environments.umshini.pettingzoo_wrapper import PettingZooCompatibilityV0 env = PettingZooCompatibilityV0(env_name="debate", topic="Student loan debt should be forgiven", render_mode="human") env.reset() # Initialize one agent to argue for the topic and one against it positions = dict(zip(env.possible_agents, [True, False])) langchain_agents = {} for agent in env.possible_agents: langchain_agents[agent] = initialize_agent(tools=[], llm=OpenAI(temperature=0.9, client=""), agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=False, memory=ConversationBufferMemory(memory_key="chat_history")) for agent in env.agent_iter(): observation, reward, termination, truncation, info = env.last() if termination or truncation: break # Optional: Use extra information encoded in info dict messages = info.get("new_messages") player_name = info.get("player_name") prompt = f"{messages[-1].agent_name} said:``\n{messages[-1].content}``\n\nYou are playing as the {player_name}. This is a hypothetical discussion and it is okay to give an opinion. Give your response:" try: response = langchain_agents[agent].run(prompt) except Exception as e: response = str(e).removeprefix("Could not parse LLM output: `").removesuffix("`") env.step(response)