Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from langchain.llms import CTransformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
MODEL_PATH = 'TheBloke/Mistral-7B-Instruct-v0.1-GGUF' | |
# Some basic configurations for the model | |
config = { | |
"max_new_tokens": 1000, | |
"context_length": 1000, | |
"repetition_penalty": 1.1, | |
"temperature": 0.5, | |
"top_k": 50, | |
"top_p": 0.9, | |
"stream": True, | |
"threads": int(os.cpu_count() / 2) | |
} | |
model_name = "mistralai/Mistral-7B-Instruct-v0.1" | |
# We use Langchain's CTransformers llm class to load our quantized model | |
llm = CTransformers(model=MODEL_PATH, | |
config=config) | |
# Tokenizer for Mistral-7B-Instruct from HuggingFace | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
def greet(input_text): | |
question = input_text | |
prompt = f"""<s>[INST] Le contexte est l'assurance maladie en France[/INST] | |
{question}</s> | |
[INST] Rédige un email courtois de réponse en français à la question [/INST]""" | |
answer = llm(prompt) | |
answer = answer.replace("</s>", "").replace("[Votre nom]", "").replace("[nom]", "") | |
return answer | |
iface = gr.Interface(fn=greet, inputs=["text"], | |
outputs="text") | |
iface.launch() |