Spaces:
Sleeping
Sleeping
File size: 1,374 Bytes
704093d 79776cb 134c076 704093d c3e00da 704093d c3e00da 704093d beb1c01 79776cb 704093d 79776cb 704093d 79776cb 704093d 79776cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import numpy as np
from pypdf import PdfReader
import os
from transformers import pipeline
model_path = "models"
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
model._is_chat_session_activated = False
max_new_tokens = 2048
def extract_text(file):
reader = PdfReader(file)
text = []
for p in np.arange(0, len(reader.pages), 1):
page = reader.pages[int(p)]
# extracting text from page
text.append(page.extract_text())
text = ' '.join(text)
return text
def summarise(text):
pred = pipe(text , min_length)
return pred[0]["summary_text"]
with gr.Blocks() as demo:
file_input = gr.File(label="Upload a PDF file")
text_output = gr.Textbox(label="Extracted Text")
summary_output = gr.Textbox(label="Summary")
file_input.upload(extract_text, inputs=file_input, outputs=text_output)
text_output.change(summarise,text_output,summary_output)
demo.launch() |