import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import numpy as np from pypdf import PdfReader import os from transformers import pipeline model_path = "models" model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") model.config["promptTemplate"] = "[INST] {0} [/INST]" model.config["systemPrompt"] = "Tu es un assitant et ta tâche est de résumer des texte en français" model._is_chat_session_activated = False max_new_tokens = 2048 def extract_text(file): reader = PdfReader(file) text = [] for p in np.arange(0, len(reader.pages), 1): page = reader.pages[int(p)] # extracting text from page text.append(page.extract_text()) #text = ' '.join(text) return text[0] def summarise(text): prompt = text outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens) return outputs with gr.Blocks() as demo: file_input = gr.File(label="Upload a PDF file") text_output = gr.Textbox(label="Extracted Text") summary_output = gr.Textbox(label="Summary") file_input.upload(extract_text, inputs=file_input, outputs=text_output) text_output.change(summarise,text_output,summary_output) demo.launch()