File size: 5,002 Bytes
dc54faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf7aaf
 
 
 
dc54faf
 
 
 
 
8bd2156
dc54faf
 
 
 
 
 
 
 
8bd2156
dc54faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efad6bb
 
 
 
 
 
 
dc54faf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download

title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"

description = """
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. 
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). 
"""

"""
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
"""

model_path = "models"
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"

hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)

print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
print("Finish the model init process")

model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
model._is_chat_session_activated = False

max_new_tokens = 2048

def generater(message, history, temperature, top_p, top_k):
    prompt = "<s>"
    for user_message, assistant_message in history:
        prompt += model.config["promptTemplate"].format(user_message)
        prompt += assistant_message + "</s>"
    prompt += model.config["promptTemplate"].format(message)
    outputs = []    
    for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
        outputs.append(token)
        yield "".join(outputs)

def vote(data: gr.LikeData):
    if data.liked:
        return
    else:
        return

chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False)

additional_inputs=[
    gr.Slider(
        label="temperature",
        value=0.5,
        minimum=0.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.",
    ),
    gr.Slider(
        label="top_p",
        value=1.0,
        minimum=0.0,
        maximum=1.0,
        step=0.01,
        interactive=True,
        info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it",
    ),
    gr.Slider(
        label="top_k",
        value=40,
        minimum=0,
        maximum=1000,
        step=1,
        interactive=True,
        info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
    )
]

character = "Sherlock Holmes"
series = "Arthur Conan Doyle's novel"

iface = gr.ChatInterface(
    fn = generater,
    title=title,
    description = description,
    chatbot=chatbot,
    additional_inputs=additional_inputs,
    #examples=[
     #   ["Hello there! How are you doing?"],
      #  ["How many hours does it take a man to eat a Helicopter?"],
       # ["You are a helpful and honest assistant. Always answer as helpfully as possible. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."],
        #["I want you to act as a spoken English teacher and improver. I will speak to you in English and you will reply to me in English to practice my spoken English. I want you to strictly correct my grammar mistakes, typos, and factual errors. I want you to ask me a question in your reply. Now let's start practicing, you could ask me a question first. Remember, I want you to strictly correct my grammar mistakes, typos, and factual errors."],
        #[f"I want you to act like {character} from {series}. I want you to respond and answer like {character} using the tone, manner and vocabulary {character} would use. Do not write any explanations. Only answer like {character}. You must know all of the knowledge of {character}."]
    #]
)

with gr.Blocks(css="resourse/style/custom.css") as demo:
    chatbot.like(vote, None, None)
    iface.render()

if __name__ == "__main__":
    demo.queue(max_size=3).launch()