Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gpt4all import GPT4All | |
from huggingface_hub import hf_hub_download | |
import faiss | |
#from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEmbeddings | |
import numpy as np | |
from pypdf import PdfReader | |
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware" | |
description = """ | |
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). | |
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. | |
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). | |
""" | |
""" | |
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) | |
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) | |
""" | |
model_path = "models" | |
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" | |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) | |
print("Start the model init process") | |
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") | |
# creating a pdf reader object | |
""" | |
reader = PdfReader("./resource/NGAP 01042024.pdf") | |
text = [] | |
for p in np.arange(0, len(reader.pages), 1): | |
page = reader.pages[int(p)] | |
# extracting text from page | |
text.append(page.extract_text()) | |
text = ' '.join(text) | |
chunk_size = 2048 | |
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)] | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
embeddings = HuggingFaceEmbeddings( | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
def get_text_embedding(text): | |
return embeddings.embed_query(text) | |
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks]) | |
d = text_embeddings.shape[1] | |
index = faiss.IndexFlatL2(d) | |
index.add(text_embeddings) | |
#index = faiss.read_index("./resourse/embeddings_ngap.faiss") | |
""" | |
print("Finish the model init process") | |
def format_chat_prompt(message, chat_history): | |
prompt = "" | |
for turn in chat_history: | |
user_message, bot_message = turn | |
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}" | |
prompt = f"{prompt}\nUser: {message}\nAssistant:" | |
return prompt | |
context = [ | |
{ | |
"role": "system", | |
"content": """Tu est un assitant virtuel au service des assurés pour l'assurance maladie en France. | |
Réponds en français avec politesse et signes tes réponses par 'Votre assitant virtuel Ameli'. | |
""", | |
} | |
] | |
max_new_tokens = 2048 | |
def respond(message, chat_history): | |
prompt = message | |
context.append({'role':'user', 'content':f"{prompt}"}) | |
#tokenized_chat = tokenizer.apply_chat_template(context, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
#outputs = model.generate(tokenized_chat, max_new_tokens=1000, temperature = 0.0) | |
#bot_message = tokenizer.decode(outputs[0]).split("<|assistant|>")[-1].replace("</s>","") | |
bot_message = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens, streaming=False) | |
context.append({'role':'assistant', 'content':f"{bot_message}"}) | |
chat_history.append((message, bot_message)) | |
return "", chat_history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Assistant virtuel Ameli") | |
gr.Markdown("Mes réponses sont générées par IA. Elles peuvent être fausses ou imprécises.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
text = gr.Textbox(lines =5) | |
#msg = gr.Textbox(label="Posez votre question") | |
btn = gr.Button("Soumettre la question") | |
with gr.Column(scale=2, min_width=50): | |
chatbot = gr.Chatbot(height=700) #just to fit the notebook | |
clear = gr.ClearButton(components=[text, chatbot], value="Clear console") | |
btn.click(respond, inputs=[text, chatbot], outputs=[text, chatbot]) | |
text.submit(respond, inputs=[text, chatbot], outputs=[text, chatbot]) #Press enter to submit | |
if __name__ == "__main__": | |
demo.queue(max_size=3).launch() |