rag_ngap / app.py
xavierbarbier's picture
Update app.py
a0ebadb verified
raw
history blame
4.72 kB
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
import faiss
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
import numpy as np
from pypdf import PdfReader
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
description = """
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all).
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing).
"""
"""
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
"""
model_path = "models"
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
# creating a pdf reader object
"""
reader = PdfReader("./resource/NGAP 01042024.pdf")
text = []
for p in np.arange(0, len(reader.pages), 1):
page = reader.pages[int(p)]
# extracting text from page
text.append(page.extract_text())
text = ' '.join(text)
chunk_size = 2048
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
def get_text_embedding(text):
return embeddings.embed_query(text)
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
d = text_embeddings.shape[1]
index = faiss.IndexFlatL2(d)
index.add(text_embeddings)
#index = faiss.read_index("./resourse/embeddings_ngap.faiss")
"""
print("Finish the model init process")
def format_chat_prompt(message, chat_history):
prompt = ""
for turn in chat_history:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
context = [
{
"role": "system",
"content": """Tu est un assitant virtuel au service des assurés pour l'assurance maladie en France.
Réponds en français avec politesse et signes tes réponses par 'Votre assitant virtuel Ameli'.
""",
}
]
max_new_tokens = 2048
def respond(message, chat_history):
prompt = message
context.append({'role':'user', 'content':f"{prompt}"})
#tokenized_chat = tokenizer.apply_chat_template(context, tokenize=True, add_generation_prompt=True, return_tensors="pt")
#outputs = model.generate(tokenized_chat, max_new_tokens=1000, temperature = 0.0)
#bot_message = tokenizer.decode(outputs[0]).split("<|assistant|>")[-1].replace("</s>","")
bot_message = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens, streaming=False)
context.append({'role':'assistant', 'content':f"{bot_message}"})
chat_history.append((message, bot_message))
return "", chat_history
with gr.Blocks() as demo:
gr.Markdown("# Assistant virtuel Ameli")
gr.Markdown("Mes réponses sont générées par IA. Elles peuvent être fausses ou imprécises.")
with gr.Row():
with gr.Column(scale=1):
text = gr.Textbox(lines =5)
#msg = gr.Textbox(label="Posez votre question")
btn = gr.Button("Soumettre la question")
with gr.Column(scale=2, min_width=50):
chatbot = gr.Chatbot(height=700) #just to fit the notebook
clear = gr.ClearButton(components=[text, chatbot], value="Clear console")
btn.click(respond, inputs=[text, chatbot], outputs=[text, chatbot])
text.submit(respond, inputs=[text, chatbot], outputs=[text, chatbot]) #Press enter to submit
if __name__ == "__main__":
demo.queue(max_size=3).launch()