rag_ngap / app.py
xavierbarbier's picture
Update app.py
8410290 verified
raw
history blame
4.35 kB
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
import faiss
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
import numpy as np
from pypdf import PdfReader
from gradio_pdf import PDF
from transformers import pipeline
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
description = """
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all).
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing).
"""
"""
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
"""
"""
model_path = "models"
model_name = "SmolLM-1.7B-Instruct.Q2_K.gguf"
hf_hub_download(repo_id="mradermacher/SmolLM-1.7B-Instruct-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "croissantllm/CroissantLLMBase"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
print("Start the model init process")
"""model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
model._is_chat_session_activated = False
max_new_tokens = 2048"""
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# creating a pdf reader object
print("Finish the model init process")
def get_text_embedding(text):
return embeddings.embed_query(text)
# FAISS index
doc_path = hf_hub_download(repo_id="xavierbarbier/rag_ngap", filename="resource/embeddings_ngap.faiss", repo_type="space")
index = faiss.read_index(doc_path)
# Chunks
doc_path = hf_hub_download(repo_id="xavierbarbier/rag_ngap", filename="resource/NGAP 01042024.pdf", repo_type="space")
reader = PdfReader(doc_path)
text = []
for p in np.arange(0, len(reader.pages), 1):
page = reader.pages[int(p)]
# extracting text from page
text.append(page.extract_text())
text = ' '.join(text)
chunk_size = 2048
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
def qa(question):
question_embeddings = np.array([get_text_embedding(question)])
D, I = index.search(question_embeddings, k=1) # distance, index
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
prompt = f"""
Context information is below.
---------------------
{retrieved_chunk}
---------------------
Given the context information and not prior knowledge, answer the query.
Query: {question}
Answer:
"""
"""
max_new_tokens = 2048
outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens)"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
tokens = model.generate(**inputs, max_length=1000, do_sample=True, top_p=0.95, top_k=60, temperature=0.3)
return tokenizer.decode(tokens[0])
with gr.Blocks() as demo:
question_input = gr.Textbox(label="Question")
qa_button = gr.Button("Click to qa")
promp_output = gr.Textbox(label="prompt")
qa_button.click(qa, question_input, promp_output)
if __name__ == "__main__":
demo.queue(max_size=3).launch()