Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gpt4all import GPT4All | |
from huggingface_hub import hf_hub_download | |
import faiss | |
#from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEmbeddings | |
import numpy as np | |
from pypdf import PdfReader | |
from gradio_pdf import PDF | |
from transformers import pipeline | |
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware" | |
description = """ | |
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). | |
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. | |
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). | |
""" | |
""" | |
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) | |
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) | |
""" | |
""" | |
model_path = "models" | |
model_name = "SmolLM-1.7B-Instruct.Q2_K.gguf" | |
hf_hub_download(repo_id="mradermacher/SmolLM-1.7B-Instruct-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) | |
""" | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "croissantllm/CroissantLLMBase" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") | |
print("Start the model init process") | |
"""model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") | |
model.config["promptTemplate"] = "[INST] {0} [/INST]" | |
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français" | |
model._is_chat_session_activated = False | |
max_new_tokens = 2048""" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
embeddings = HuggingFaceEmbeddings( | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
# creating a pdf reader object | |
print("Finish the model init process") | |
def get_text_embedding(text): | |
return embeddings.embed_query(text) | |
# FAISS index | |
doc_path = hf_hub_download(repo_id="xavierbarbier/rag_ngap", filename="resource/embeddings_ngap.faiss", repo_type="space") | |
index = faiss.read_index(doc_path) | |
# Chunks | |
doc_path = hf_hub_download(repo_id="xavierbarbier/rag_ngap", filename="resource/NGAP 01042024.pdf", repo_type="space") | |
reader = PdfReader(doc_path) | |
text = [] | |
for p in np.arange(0, len(reader.pages), 1): | |
page = reader.pages[int(p)] | |
# extracting text from page | |
text.append(page.extract_text()) | |
text = ' '.join(text) | |
chunk_size = 2048 | |
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)] | |
def qa(question): | |
question_embeddings = np.array([get_text_embedding(question)]) | |
D, I = index.search(question_embeddings, k=1) # distance, index | |
retrieved_chunk = [chunks[i] for i in I.tolist()[0]] | |
prompt = f""" | |
Context information is below. | |
--------------------- | |
{retrieved_chunk} | |
--------------------- | |
Given the context information and not prior knowledge, answer the query. | |
Query: {question} | |
Answer: | |
""" | |
""" | |
max_new_tokens = 2048 | |
outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens)""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
tokens = model.generate(**inputs, max_length=1000, do_sample=True, top_p=0.95, top_k=60, temperature=0.3) | |
return tokenizer.decode(tokens[0]) | |
with gr.Blocks() as demo: | |
question_input = gr.Textbox(label="Question") | |
qa_button = gr.Button("Click to qa") | |
promp_output = gr.Textbox(label="prompt") | |
qa_button.click(qa, question_input, promp_output) | |
if __name__ == "__main__": | |
demo.queue(max_size=3).launch() |