Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gpt4all import GPT4All | |
from huggingface_hub import hf_hub_download | |
import faiss | |
#from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEmbeddings | |
import numpy as np | |
from pypdf import PdfReader | |
from gradio_pdf import PDF | |
from pdf2image import convert_from_path | |
from transformers import pipeline | |
from pathlib import Path | |
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware" | |
description = """ | |
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). | |
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. | |
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). | |
""" | |
""" | |
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) | |
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) | |
""" | |
model_path = "models" | |
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" | |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) | |
print("Start the model init process") | |
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") | |
model.config["promptTemplate"] = "[INST] {0} [/INST]" | |
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français" | |
model._is_chat_session_activated = False | |
max_new_tokens = 2048 | |
# creating a pdf reader object | |
print("Finish the model init process") | |
dir_ = Path(__file__).parent | |
p = pipeline( | |
"document-question-answering", | |
model="impira/layoutlm-document-qa", | |
) | |
def qa(question: str, doc: str) -> str: | |
img = convert_from_path(doc)[0] | |
output = p(img, question) | |
return sorted(output, key=lambda x: x["score"], reverse=True)[0]['answer'] | |
demo = gr.Interface( | |
qa, | |
[gr.Textbox(label="Question"), PDF(label="Document")], | |
gr.Textbox() | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=3).launch() |