Spaces:
Sleeping
Sleeping
xavierbarbier
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -60,6 +60,25 @@ def get_text_embedding(text):
|
|
60 |
|
61 |
return embeddings.embed_query(text)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def extract_text(file):
|
65 |
|
@@ -77,15 +96,9 @@ def extract_text(file):
|
|
77 |
|
78 |
return text
|
79 |
|
80 |
-
def qa(
|
81 |
-
|
82 |
-
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
d = text_embeddings.shape[1]
|
87 |
-
index = faiss.IndexFlatL2(d)
|
88 |
-
index.add(text_embeddings)
|
89 |
|
90 |
question_embeddings = np.array([get_text_embedding(question)])
|
91 |
|
@@ -104,16 +117,18 @@ def qa(text, question):
|
|
104 |
|
105 |
return prompt
|
106 |
|
|
|
|
|
|
|
107 |
with gr.Blocks() as demo:
|
108 |
-
file_input = gr.File(label="Upload a PDF file")
|
109 |
-
question_input = gr.Textbox(label="Question")
|
110 |
-
text_output = gr.Textbox(label="Extracted Text")
|
111 |
|
|
|
|
|
|
|
112 |
promp_output = gr.Textbox(label="prompt")
|
113 |
|
114 |
|
115 |
-
|
116 |
-
text_output.change(qa,[text_output,question_input],promp_output)
|
117 |
|
118 |
|
119 |
|
|
|
60 |
|
61 |
return embeddings.embed_query(text)
|
62 |
|
63 |
+
reader = PdfReader("/resource/NGAP 01042024.pdf")
|
64 |
+
|
65 |
+
text = []
|
66 |
+
for p in np.arange(0, len(reader.pages), 1):
|
67 |
+
page = reader.pages[int(p)]
|
68 |
+
|
69 |
+
# extracting text from page
|
70 |
+
text.append(page.extract_text())
|
71 |
+
|
72 |
+
text = ' '.join(text)
|
73 |
+
|
74 |
+
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
75 |
+
|
76 |
+
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
|
77 |
+
|
78 |
+
d = text_embeddings.shape[1]
|
79 |
+
index = faiss.IndexFlatL2(d)
|
80 |
+
index.add(text_embeddings)
|
81 |
+
|
82 |
|
83 |
def extract_text(file):
|
84 |
|
|
|
96 |
|
97 |
return text
|
98 |
|
99 |
+
def qa(question):
|
|
|
|
|
100 |
|
101 |
+
|
|
|
|
|
|
|
|
|
102 |
|
103 |
question_embeddings = np.array([get_text_embedding(question)])
|
104 |
|
|
|
117 |
|
118 |
return prompt
|
119 |
|
120 |
+
def test_func(text):
|
121 |
+
return len(text_embeddings)
|
122 |
+
|
123 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
124 |
|
125 |
+
question_input = gr.Textbox(label="Question")
|
126 |
+
qa_button = gr.Button("Click to qa")
|
127 |
+
|
128 |
promp_output = gr.Textbox(label="prompt")
|
129 |
|
130 |
|
131 |
+
qa_button.click(test_func, question_input, promp_output)
|
|
|
132 |
|
133 |
|
134 |
|