xavierbarbier commited on
Commit
151281a
·
verified ·
1 Parent(s): 0bca80f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -8,7 +8,7 @@ import numpy as np
8
  from pypdf import PdfReader
9
  from gradio_pdf import PDF
10
  from transformers import pipeline
11
- from transformers_js import import_transformers_js
12
 
13
 
14
  title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
@@ -30,15 +30,15 @@ model_name = "SmolLM-1.7B-Instruct.Q2_K.gguf"
30
  hf_hub_download(repo_id="mradermacher/SmolLM-1.7B-Instruct-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
31
  """
32
 
33
- """
34
  import torch
35
  from transformers import AutoModelForCausalLM, AutoTokenizer
36
 
37
 
38
- model_name = "croissantllm/CroissantLLMBase"
39
  tokenizer = AutoTokenizer.from_pretrained(model_name)
40
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
41
- """
42
  print("Start the model init process")
43
  """model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
44
 
@@ -49,10 +49,7 @@ model._is_chat_session_activated = False
49
 
50
  max_new_tokens = 2048"""
51
 
52
- transformers = import_transformers_js()
53
- pipeline = transformers.pipeline
54
 
55
- pipe = pipeline('text-generation', 'Xenova/distilgpt2')
56
 
57
  model_kwargs = {'device': 'cpu'}
58
  encode_kwargs = {'normalize_embeddings': False}
 
8
  from pypdf import PdfReader
9
  from gradio_pdf import PDF
10
  from transformers import pipeline
11
+
12
 
13
 
14
  title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
 
30
  hf_hub_download(repo_id="mradermacher/SmolLM-1.7B-Instruct-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
31
  """
32
 
33
+
34
  import torch
35
  from transformers import AutoModelForCausalLM, AutoTokenizer
36
 
37
 
38
+ model_name = "microsoft/Phi-3.5-mini-instructe"
39
  tokenizer = AutoTokenizer.from_pretrained(model_name)
40
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.int8, device_map="auto")
41
+
42
  print("Start the model init process")
43
  """model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
44
 
 
49
 
50
  max_new_tokens = 2048"""
51
 
 
 
52
 
 
53
 
54
  model_kwargs = {'device': 'cpu'}
55
  encode_kwargs = {'normalize_embeddings': False}