xavierbarbier commited on
Commit
2678939
·
verified ·
1 Parent(s): 2bbdbf0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -6,7 +6,7 @@ import faiss
6
  from langchain_huggingface import HuggingFaceEmbeddings
7
  import numpy as np
8
  from pypdf import PdfReader
9
-
10
 
11
  title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
12
 
@@ -29,6 +29,10 @@ hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model
29
  print("Start the model init process")
30
  model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
31
 
 
 
 
 
32
 
33
 
34
  # creating a pdf reader object
@@ -97,13 +101,13 @@ def respond(message, chat_history):
97
 
98
  context.append({'role':'user', 'content':f"{prompt}"})
99
 
100
- #tokenized_chat = tokenizer.apply_chat_template(context, tokenize=True, add_generation_prompt=True, return_tensors="pt")
101
 
102
- #outputs = model.generate(tokenized_chat, max_new_tokens=1000, temperature = 0.0)
103
 
104
- #bot_message = tokenizer.decode(outputs[0]).split("<|assistant|>")[-1].replace("</s>","")
105
 
106
- bot_message = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens, streaming=False)
107
 
108
  context.append({'role':'assistant', 'content':f"{bot_message}"})
109
 
 
6
  from langchain_huggingface import HuggingFaceEmbeddings
7
  import numpy as np
8
  from pypdf import PdfReader
9
+ from transformers import AutoTokenizer
10
 
11
  title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
12
 
 
29
  print("Start the model init process")
30
  model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
31
 
32
+ model_name = "HuggingFaceH4/zephyr-7b-beta"
33
+ #model_name = "gpt2"
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
35
+
36
 
37
 
38
  # creating a pdf reader object
 
101
 
102
  context.append({'role':'user', 'content':f"{prompt}"})
103
 
104
+ tokenized_chat = tokenizer.apply_chat_template(context, tokenize=True, add_generation_prompt=True, return_tensors="pt")
105
 
106
+ outputs = model.generate(tokenized_chat, max_new_tokens=max_new_tokens, temperature = 0.0)
107
 
108
+ bot_message = tokenizer.decode(outputs[0]).split("<|assistant|>")[-1].replace("</s>","")
109
 
110
+ #bot_message = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens, streaming=False)
111
 
112
  context.append({'role':'assistant', 'content':f"{bot_message}"})
113