Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gpt4all import GPT4All
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
import faiss
|
5 |
-
#from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
-
import numpy as np
|
8 |
-
from pypdf import PdfReader
|
9 |
from gradio_pdf import PDF
|
10 |
-
from
|
11 |
-
from transformers import pipeline
|
12 |
-
from pathlib import Path
|
13 |
-
from langchain_chroma import Chroma
|
14 |
-
|
15 |
-
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
|
16 |
-
|
17 |
-
description = """
|
18 |
-
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all).
|
19 |
-
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
|
20 |
-
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing).
|
21 |
-
"""
|
22 |
-
|
23 |
-
"""
|
24 |
-
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
|
25 |
-
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
|
26 |
-
"""
|
27 |
-
|
28 |
-
model_path = "models"
|
29 |
-
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
30 |
-
|
31 |
-
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
32 |
-
|
33 |
-
print("Start the model init process")
|
34 |
-
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
|
35 |
-
|
36 |
-
|
37 |
-
model.config["promptTemplate"] = "[INST] {0} [/INST]"
|
38 |
-
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
|
39 |
-
model._is_chat_session_activated = False
|
40 |
-
|
41 |
-
max_new_tokens = 2048
|
42 |
-
|
43 |
-
model_kwargs = {'device': 'cpu'}
|
44 |
-
encode_kwargs = {'normalize_embeddings': False}
|
45 |
-
embeddings = HuggingFaceEmbeddings(
|
46 |
-
|
47 |
-
model_kwargs=model_kwargs,
|
48 |
-
encode_kwargs=encode_kwargs
|
49 |
-
)
|
50 |
-
|
51 |
-
chunk_size = 2048
|
52 |
-
|
53 |
-
# creating a pdf reader object
|
54 |
-
|
55 |
-
vectordb = Chroma(
|
56 |
-
persist_directory="./resource/chroma/",
|
57 |
-
embedding_function=embeddings
|
58 |
-
)
|
59 |
-
|
60 |
-
print("Finish the model init process")
|
61 |
|
62 |
-
def
|
|
|
|
|
63 |
|
|
|
|
|
64 |
|
65 |
-
|
66 |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# {docs[0].page_content}
|
73 |
-
# ---------------------
|
74 |
-
# [/INST]
|
75 |
-
# Compte tenu des informations contextuelles et non des connaissances préalables, répondez à la requête. </s>
|
76 |
-
# [INST] Requête: {question} [/INST]
|
77 |
-
# Réponse:
|
78 |
-
# """
|
79 |
-
|
80 |
-
#outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens)
|
81 |
-
return vectordb._collection.count() #"".join(outputs)
|
82 |
|
83 |
|
84 |
-
demo = gr.Interface(
|
85 |
-
qa,
|
86 |
-
[gr.Textbox(label="Question")#, PDF(label="Document")
|
87 |
-
],
|
88 |
-
gr.Textbox()
|
89 |
-
)
|
90 |
if __name__ == "__main__":
|
91 |
-
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from gradio_pdf import PDF
|
3 |
+
from pypdf import PdfReader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def upload_file(files):
|
6 |
+
file_paths = [file.name for file in files]
|
7 |
+
return file_paths
|
8 |
|
9 |
+
def summarise_file(file):
|
10 |
+
text = PdfReader(file)
|
11 |
|
12 |
+
return text
|
13 |
|
14 |
+
with gr.Blocks() as demo:
|
15 |
+
file_output = gr.File()
|
16 |
+
upload_button = gr.UploadButton("Click to Upload a File", file_types=["pdf", "doc"], file_count="multiple")
|
17 |
+
upload_button.upload(upload_file, upload_button, file_output)
|
18 |
|
19 |
+
file_summary = gr.Textbox()
|
20 |
+
sum_button = gr.Button("Click to summarise file")
|
21 |
+
|
22 |
+
sum_button.click(summarise_file, file_output, file_summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if __name__ == "__main__":
|
26 |
+
demo.queue(max_size=3).launch()
|