Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,6 +39,17 @@ model._is_chat_session_activated = False
|
|
39 |
|
40 |
max_new_tokens = 2048
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# creating a pdf reader object
|
43 |
|
44 |
print("Finish the model init process")
|
@@ -51,6 +62,10 @@ p = pipeline(
|
|
51 |
model="impira/layoutlm-document-qa",
|
52 |
)
|
53 |
|
|
|
|
|
|
|
|
|
54 |
def qa(question: str, doc: str) -> str:
|
55 |
|
56 |
reader = PdfReader(doc)
|
@@ -64,8 +79,30 @@ def qa(question: str, doc: str) -> str:
|
|
64 |
|
65 |
text = ' '.join(text)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
return
|
69 |
|
70 |
|
71 |
demo = gr.Interface(
|
|
|
39 |
|
40 |
max_new_tokens = 2048
|
41 |
|
42 |
+
model_kwargs = {'device': 'cpu'}
|
43 |
+
encode_kwargs = {'normalize_embeddings': False}
|
44 |
+
embeddings = HuggingFaceEmbeddings(
|
45 |
+
|
46 |
+
model_kwargs=model_kwargs,
|
47 |
+
encode_kwargs=encode_kwargs
|
48 |
+
)
|
49 |
+
|
50 |
+
chunk_size = 2048
|
51 |
+
|
52 |
+
|
53 |
# creating a pdf reader object
|
54 |
|
55 |
print("Finish the model init process")
|
|
|
62 |
model="impira/layoutlm-document-qa",
|
63 |
)
|
64 |
|
65 |
+
def get_text_embedding(text):
|
66 |
+
|
67 |
+
return embeddings.embed_query(text)
|
68 |
+
|
69 |
def qa(question: str, doc: str) -> str:
|
70 |
|
71 |
reader = PdfReader(doc)
|
|
|
79 |
|
80 |
text = ' '.join(text)
|
81 |
|
82 |
+
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
83 |
+
|
84 |
+
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
|
85 |
+
|
86 |
+
d = text_embeddings.shape[1]
|
87 |
+
index = faiss.IndexFlatL2(d)
|
88 |
+
index.add(text_embeddings)
|
89 |
+
|
90 |
+
question_embeddings = np.array([get_text_embedding(question)])
|
91 |
+
|
92 |
+
D, I = index.search(question_embeddings, k=2) # distance, index
|
93 |
+
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
|
94 |
+
|
95 |
+
prompt = f"""
|
96 |
+
Context information is below.
|
97 |
+
---------------------
|
98 |
+
{retrieved_chunk}
|
99 |
+
---------------------
|
100 |
+
Given the context information and not prior knowledge, answer the query.
|
101 |
+
Query: {question}
|
102 |
+
Answer:
|
103 |
+
"""
|
104 |
|
105 |
+
return prompt
|
106 |
|
107 |
|
108 |
demo = gr.Interface(
|