Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,12 +42,30 @@ embeddings = HuggingFaceEmbeddings(
|
|
42 |
encode_kwargs=encode_kwargs
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def generater(message, history, temperature, top_p, top_k):
|
46 |
prompt = "<s>"
|
47 |
for user_message, assistant_message in history:
|
48 |
prompt += model.config["promptTemplate"].format(user_message)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
prompt += model.config["promptTemplate"].format(message)
|
|
|
|
|
|
|
|
|
51 |
outputs = []
|
52 |
for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
|
53 |
outputs.append(token)
|
|
|
42 |
encode_kwargs=encode_kwargs
|
43 |
)
|
44 |
|
45 |
+
index = faiss.load_index("resourse//embeddings_ngap.faiss")
|
46 |
+
|
47 |
+
def get_text_embedding(text):
|
48 |
+
|
49 |
+
return embeddings.embed_query(text)
|
50 |
+
|
51 |
def generater(message, history, temperature, top_p, top_k):
|
52 |
prompt = "<s>"
|
53 |
for user_message, assistant_message in history:
|
54 |
prompt += model.config["promptTemplate"].format(user_message)
|
55 |
+
|
56 |
+
question = prompt
|
57 |
+
question_embeddings = np.array([get_text_embedding(prompt)])
|
58 |
+
D, I = index.search(question_embeddings, k=2) # distance, index
|
59 |
+
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
prompt += assistant_message + " Contexte:" + retrieved_chunk + "</s>"
|
64 |
prompt += model.config["promptTemplate"].format(message)
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
outputs = []
|
70 |
for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
|
71 |
outputs.append(token)
|