import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import faiss #from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEmbeddings import numpy as np title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware" description = """ 🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. Mistral does not support system prompt symbol (such as ```<>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). """ """ [Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) [Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) """ model_path = "models" model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = "[INST] {0} [/INST]" model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français" model._is_chat_session_activated = False max_new_tokens = 2048 model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} embeddings = HuggingFaceEmbeddings( model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) #index = faiss.load_local("resourse/embeddings_ngap.faiss") def get_text_embedding(text): return embeddings.embed_query(text) def generater(message, history, temperature, top_p, top_k): prompt = "" for user_message, assistant_message in history: prompt += model.config["promptTemplate"].format(user_message) question = prompt question_embeddings = np.array([get_text_embedding(prompt)]) D, I = index.search(question_embeddings, k=2) # distance, index retrieved_chunk = [chunks[i] for i in I.tolist()[0]] prompt += assistant_message + " Contexte:" + retrieved_chunk + "" prompt += model.config["promptTemplate"].format(message) outputs = [] for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True): outputs.append(token) yield "".join(outputs) def vote(data: gr.LikeData): if data.liked: return else: return chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False) """ additional_inputs=[ gr.Slider( label="temperature", value=0.5, minimum=0.0, maximum=2.0, step=0.05, interactive=True, info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", ), gr.Slider( label="top_p", value=1.0, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", ), gr.Slider( label="top_k", value=40, minimum=0, maximum=1000, step=1, interactive=True, info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", ) ] """ additional_inputs=[ gr.UploadButton(file_types=[".pdf",".csv",".doc"]) ] iface = gr.ChatInterface( fn = generater, title=title, description = description, chatbot=chatbot, additional_inputs=additional_inputs, ) with gr.Blocks(css="resourse/style/custom.css") as demo: chatbot.like(vote, None, None) iface.render() if __name__ == "__main__": demo.queue(max_size=3).launch()