File size: 29,637 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import random
from typing import Dict, Iterator, List, Tuple, Union
from fairseq import utils
import numpy as np
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from fairseq.data import Dictionary
from src.slam_llm.models.vallex.transformers import (
    LayerNorm,
    TransformerEncoder,
    TransformerEncoderLayer,
)
from src.slam_llm.models.vallex.vallex_config import VallexConfig
from transformers.modeling_utils import PreTrainedModel
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
from dataclasses import dataclass

@dataclass
class ModelOutput:
    logits: torch.Tensor
    loss: torch.Tensor
    acc: torch.Tensor

def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True, scale=1, prob_mask=None):
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    if prob_mask is not None:
        lprobs = lprobs.masked_fill(prob_mask, 0.0)
        n_class = (1-prob_mask.float()).sum()
    else:
        n_class = lprobs.size(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target) 
    # nll_loss = nll_loss * scale
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True) * scale 
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index) 
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
        pad_mask_float = (1 - pad_mask.to(torch.float)).sum()
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)
    if reduce:
        nll_loss = nll_loss.sum()
        smooth_loss = smooth_loss.sum()
    eps_i = epsilon / (n_class - 1) 
    loss = (1.0 - epsilon - eps_i) * nll_loss + \
        eps_i * smooth_loss 
    return loss / pad_mask_float, nll_loss / pad_mask_float


class SinusoidalPositionalEmbedding(nn.Module):
    def __init__(self, embedding_dim, padding_idx, init_size=1024):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx if padding_idx is not None else 0
        self.weights = SinusoidalPositionalEmbedding.get_embedding(
            init_size, embedding_dim, padding_idx
        )
        self.onnx_trace = False
        self.register_buffer("_float_tensor", torch.FloatTensor(1))
        self.max_positions = int(1e5)

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    @staticmethod
    def get_embedding(

        num_embeddings: int, embedding_dim: int, padding_idx = None

    ):
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(
            1
        ) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(
            num_embeddings, -1
        )
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0
        return emb

    def forward(

        self,

        input,

        incremental_state = None,

        timestep = None,

        positions = None,

    ):
        bspair = torch.onnx.operators.shape_as_tensor(input)
        bsz, seq_len = bspair[0], bspair[1]
        max_pos = self.padding_idx + 1 + seq_len
        if self.weights is None or max_pos > self.weights.size(0):
            # recompute/expand embeddings if needed
            self.weights = SinusoidalPositionalEmbedding.get_embedding(
                max_pos, self.embedding_dim, self.padding_idx
            )
        self.weights = self.weights.to(self._float_tensor)

        if incremental_state is not None:
            # positions is the same for every token when decoding a single step
            pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
            if self.onnx_trace:
                return (
                    self.weights.index_select(index=self.padding_idx + pos, dim=0)
                    .unsqueeze(1)
                    .repeat(bsz, 1, 1)
                )
            return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)

        positions = utils.make_positions(
            input, self.padding_idx, onnx_trace=self.onnx_trace
        )
        if self.onnx_trace:
            flat_embeddings = self.weights.detach().index_select(0, positions.view(-1))
            embedding_shape = torch.cat(
                (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long))
            )
            embeddings = torch.onnx.operators.reshape_from_tensor_shape(
                flat_embeddings, embedding_shape
            )
            return embeddings
        return (
            self.weights.index_select(0, positions.view(-1))
            .view(bsz, seq_len, -1)
            .detach()
        )


class Transpose(nn.Identity):
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return input.transpose(1, 2)


class VALLF(PreTrainedModel):
    config_class = VallexConfig
    
    def __init__(

        self,

        config: VallexConfig

    ):
        super().__init__(config)
        
        self.ar_at_dict = Dictionary.load(self.config.ar_at_dict)
        self.ar_st_dict = Dictionary.load(self.config.ar_st_dict)
        self.nar_at_dict = Dictionary.load(self.config.nar_at_dict)
        self.nar_st_dict = Dictionary.load(self.config.nar_st_dict)
        
        self.ar_at_dict.tts_flag = self.ar_at_dict.add_symbol("<TTS>")
        self.ar_st_dict.asr_flag = self.ar_st_dict.add_symbol("<ASR>")
        self.ar_st_dict.mt_flag = self.ar_st_dict.add_symbol("<MT>")
        
        self.padding_idx = self.ar_at_dict.pad()
        self.config = config
        d_model = self.config.n_dim
        nar_scale_factor = self.config.nar_scale_factor
        prepend_bos = self.config.prepend_bos
        
        norm_first = self.config.norm_first
        num_layers = self.config.n_layer
        self.NUM_AUDIO_TOKENS = self.ar_at_dict.eos()
        
        nar_d_model = int(d_model * nar_scale_factor)

        self.ar_text_embedding = nn.Embedding(len(self.ar_st_dict), d_model, self.ar_st_dict.pad())  # W_x
        if config.only_ar:
            pass
        else:
            self.nar_text_embedding = nn.Embedding(len(self.nar_st_dict), d_model, self.nar_st_dict.pad())

        # ID self.NUM_AUDIO_TOKENS     -> PAD
        # ID self.NUM_AUDIO_TOKENS + 1 -> BOS
        self.ar_audio_prepend_bos = prepend_bos
        self.ar_audio_embedding = EncodecDecoderLstm(
            dictionary=self.ar_at_dict, emb_dim=d_model
        )

        self.ar_text_prenet = nn.Identity()
        self.ar_audio_prenet = nn.Identity()

        self.ar_text_position = SinusoidalPositionalEmbedding(
            d_model,
            padding_idx=self.ar_at_dict.pad(),
            init_size=1024+self.ar_at_dict.pad()+1
        )
        self.ar_audio_position = SinusoidalPositionalEmbedding(
            d_model,
            padding_idx=self.ar_at_dict.pad(),
            init_size=1024+self.ar_at_dict.pad()+1
        )

        self.ar_decoder = TransformerEncoder(
            TransformerEncoderLayer(
                d_model,
                self.config.n_head,
                dim_feedforward=d_model * 4,
                dropout=0.1,
                batch_first=True,
                norm_first=norm_first,
            ),
            num_layers=num_layers,
            norm=LayerNorm(d_model) if norm_first else None,
        )
        self.ar_predict_layer = nn.Linear(
            d_model, len(self.ar_at_dict), bias=False
        )

        self.rng = random.Random(0)
        self.num_heads = self.config.n_head
        self.prefix_mode = self.config.prefix_mode
        self.num_quantizers = self.config.num_quantizers

        assert self.num_quantizers >= 1
        if config.only_ar:
            pass
        else:
            if self.num_quantizers > 1:
                self.nar_audio_embeddings = NATEncodecDecoderLstm(
                    codecs=[0, 1, 2, 3, 4, 5, 6, 7], dictionary=self.nar_at_dict, emb_dim=d_model
                )  # W_a

                self.nar_text_prenet = nn.Identity()
                self.nar_audio_prenet = nn.Identity()

                self.nar_text_position = SinusoidalPositionalEmbedding(
                    d_model,
                    padding_idx=self.nar_at_dict.pad(),
                    init_size=1024+self.nar_at_dict.pad()+1
                )
                self.nar_audio_position = SinusoidalPositionalEmbedding(
                    d_model,
                    padding_idx=self.nar_at_dict.pad(),
                    init_size=1024+self.nar_at_dict.pad()+1
                )

                self.nar_decoder = TransformerEncoder(
                    TransformerEncoderLayer(
                        nar_d_model,
                        int(self.num_heads * nar_scale_factor),
                        dim_feedforward=nar_d_model * 4,
                        dropout=0.1,
                        batch_first=True,
                        norm_first=norm_first,
                        adaptive_layer_norm=True,
                    ),
                    num_layers=int(num_layers * nar_scale_factor),
                    norm=nn.LayerNorm(nar_d_model)
                    if norm_first
                    else None,
                )
                self.nar_predict_layers = nn.ModuleList(
                    [
                        nn.Linear(nar_d_model, len(self.nar_at_dict), bias=False)
                        for i in range(self.num_quantizers)
                    ]
                )
                self.nar_stage_embeddings = None

    def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]:
        assert stage > 0
        if stage == 1:
            for name, param in self.named_parameters():
                if name.startswith("ar_"):
                    print(f" AR parameter: {name}")
                    yield param

        if stage == 2:
            for name, param in self.named_parameters():
                if name.startswith("nar_"):
                    print(f"NAR parameter: {name}")
                    yield param

    def stage_named_parameters(

        self, stage: int = 1

    ) -> Iterator[Tuple[str, nn.Parameter]]:
        assert stage > 0
        if stage == 1:
            for pair in self.named_parameters():
                if pair[0].startswith("ar_"):
                    yield pair

        if stage == 2:
            for pair in self.named_parameters():
                if pair[0].startswith("nar_"):
                    yield pair

    def pad_y_eos(self, y, y_mask_int, eos_id):
        targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
            y_mask_int, (0, 1), value=1
        )
        # inputs, targets
        if self.ar_audio_prepend_bos:
            return (
                F.pad(targets[:, :-1], (1, 0), value=self.NUM_AUDIO_TOKENS + 1),
                targets,
            )

        return targets[:, :-1], targets[:, 1:]

class VALLE(VALLF):
    config_class = VallexConfig
    
    def __init__(

        self,

        config: VallexConfig,

        **kwargs,

    ):
        super(VALLE, self).__init__(
            config,
            **kwargs,
        )
        print(config)
        self.config = config
        d_model = self.config.n_dim
        self.eps = config.eps
        
        self.language_ID = {
            'en': 0,
            'zh': 1,
        }
        self.ar_language_embedding = nn.Embedding(3, d_model, padding_idx=2) 
        self.nar_language_embedding = nn.Embedding(3, d_model, padding_idx=2) 
        self.embed_scale = 32.0
        
    def forward(

        self,

        zh,

        en

    ):
        """

        "zh": {

            "st_tokens": zh_st,

            "at_tokens_wbos": zh_prev_at,

            "at_tokens_tgt": zh_tgt_at,

            "self_atten_mask": zh_self_atten_mask,

            "padding_mask": zh_padding_mask,

            "langid": zh_id.long()

        },

        "en": {

            "st_tokens": en_st,

            "at_tokens_wbos": en_prev_at,

            "at_tokens_tgt": en_tgt_at,

            "self_atten_mask": en_self_atten_mask,

            "padding_mask": en_padding_mask,

            "langid": en_id.long()

        }

        """
        flag = (np.random.randint(low=0, high=1000) % 2 == 0) # zh or en
        if flag:
            data = zh
        else:
            data = en
        
        st_tokens = data["st_tokens"]
        at_tokens_wbos = data["at_tokens_wbos"]
        at_tokens_tgt = data["at_tokens_tgt"]
        self_atten_mask = data["self_atten_mask"]
        padding_mask = data["padding_mask"]
        langid = data["langid"]
        
        st_len = st_tokens.size(1)
        st_emb = self.embed_scale * self.ar_text_embedding(st_tokens)
        src_lang_emb = self.embed_scale * self.ar_language_embedding(langid)
        st_emb += src_lang_emb
        st_pos = self.ar_text_position(st_tokens)
        st_emb += st_pos
        
        at_emb, _ = self.ar_audio_embedding(at_tokens_wbos, None)
        at_emb = self.embed_scale * at_emb
        tgt_lang_emb = self.embed_scale * self.ar_language_embedding(langid)
        at_emb += tgt_lang_emb
        at_pos = self.ar_audio_position(at_tokens_wbos)
        at_emb += at_pos
        
        x = torch.concat([st_emb, at_emb], dim=1)
        
        x = self.ar_decoder(
            x,
            mask=self_atten_mask,
            src_key_padding_mask=padding_mask
        )
        x = self.ar_predict_layer(x)
        x = x[:, st_len:, :]
        loss, nll_loss, lprob, right_rate = self.calculate_loss(
            x, at_tokens_tgt
        )
        return ModelOutput(logits=lprob, loss=loss, acc=right_rate), right_rate

    def calculate_loss(self, encoder_out, target, reduce=True, scale=1.0, prob_mask=None, acc=True):
        lprob = self.get_normalized_probs(encoder_out, log_probs=True)
        with torch.no_grad():
            mask = target.ne(self.padding_idx)
            n_correct = torch.sum(
                lprob.argmax(-1).masked_select(mask).eq(target.masked_select(mask))
            )
            total = torch.sum(mask)
            right_rate = n_correct * 100.0 / total
        
        lprob, target = lprob.view(-1, lprob.size(-1)), target.view(-1)
        loss, nll_loss = label_smoothed_nll_loss(
            lprob,
            target,
            self.eps,
            ignore_index=self.padding_idx,
            reduce=reduce,
            scale=scale,
            prob_mask=prob_mask
        )
        
        return loss, nll_loss, lprob, right_rate
    
    def get_normalized_probs(self, encoder_out, log_probs, sample=None):
        if torch.is_tensor(encoder_out):
            logits = encoder_out.float()
            if log_probs:
                return F.log_softmax(logits, dim=-1)
            else:
                return F.softmax(logits, dim=-1)
            
    
    def inference_24L(

        self,

        x: torch.Tensor,

        x_lens: torch.Tensor,

        y: torch.Tensor,

        enroll_x_lens: torch.Tensor,

        top_k: int = -100,

        temperature: float = 1.0,

        prompt_language: str = None,

        text_language: str = None,

        best_of: int = 1,

        length_penalty: float = 1.0,

        return_worst: bool = False,

        at_eos: int = -1

    ) -> torch.Tensor:
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        assert y.shape[0] == 1, y.shape

        assert torch.all(x_lens > 0)
        self.NUM_AUDIO_TOKENS = at_eos
        text = x
        x = self.embed_scale * self.ar_text_embedding(text)
        prompt_language_id = prompt_language.to(x.device)
        text_language_id = text_language.to(x.device)
        src_lang_emb = self.embed_scale * self.ar_language_embedding(prompt_language_id)
        tgt_lang_emb = self.embed_scale * self.ar_language_embedding(text_language_id)
        x[:, :enroll_x_lens, :] += src_lang_emb
        x[:, enroll_x_lens:, :] += tgt_lang_emb
        x = self.ar_text_prenet(x)
        x_pos = self.ar_text_position(text)

        text_len = x_lens.max()
        prompts = y
        prefix_len = y.shape[1]

        # AR Decoder
        # TODO: Managing decoder steps avoid repetitive computation
        y = prompts[..., 0]
        if self.ar_audio_prepend_bos:
            y = F.pad(y, (1, 0), value=self.ar_at_dict.tts_flag)

        x_len = x_lens.max()
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)

        kv_cache = None
        use_kv_caching = True

        sum_logprobs = torch.zeros(best_of, device=y.device)  # implement batch decoding here
        x = x.repeat(best_of, 1, 1)
        y = y.repeat(best_of, 1)
        lstm_h = None
        first_ar = True
        while True:
            if first_ar:
                y_emb, lstm_h = self.ar_audio_embedding(y, lstm_h)
                y_emb = y_emb * self.embed_scale
                y_emb = self.ar_audio_prenet(y_emb)
                y_pos = self.ar_audio_position(y)
                y_emb[:, :prefix_len] = y_emb[:, :prefix_len] + src_lang_emb
                y_emb[:, prefix_len:] = y_emb[:, prefix_len:] + tgt_lang_emb
                xy_pos_token = torch.concat([x_pos+x, y_pos+y_emb], dim=1)
                first_ar = False
            else:
                y_emb_cur, lstm_h = self.ar_audio_embedding(y[:, -1:], lstm_h)
                y_emb_cur = y_emb_cur * self.embed_scale
                y_emb_cur = self.ar_audio_prenet(y_emb_cur)
                y_pos_cur = self.ar_audio_position(y)[:, -1:]
                y_emb_cur = y_emb_cur + src_lang_emb
                y_emb_cur = y_emb_cur + tgt_lang_emb
                xy_pos_token = torch.concat([xy_pos_token, y_pos_cur+y_emb_cur], dim=1)
            # print(xy_pos_token.size())

            y_len = y.shape[1]
            x_attn_mask_pad = F.pad(
                x_attn_mask,
                (0, y_len),
                value=True,
            )
            y_attn_mask = F.pad(
                torch.triu(
                    torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1
                ),
                (x_len, 0),
                value=False,
            )
            xy_attn_mask = torch.concat(
                [x_attn_mask_pad, y_attn_mask], dim=0
            ).to(y.device)


            if use_kv_caching and kv_cache is not None:
                xy_pos = xy_pos_token[:, [-1]]
                xy_attn_mask = xy_attn_mask[:, [-1]]
            else:
                xy_pos = xy_pos_token

            xy_dec, kv_cache = self.ar_decoder.infer(
                xy_pos,
                mask=xy_attn_mask,
                past_kv=kv_cache,
                use_cache=use_kv_caching,
            )

            logits = self.ar_predict_layer(xy_dec[:, -1])
            samples, current_logprobs = topk_sampling(
                logits, top_k=top_k, top_p=1, temperature=temperature
            )
            sum_logprobs += current_logprobs * (y[:, -1] != self.NUM_AUDIO_TOKENS)
            samples[y[:, -1] == self.NUM_AUDIO_TOKENS] = self.NUM_AUDIO_TOKENS
            completed = (samples[:, -1] == self.NUM_AUDIO_TOKENS).all()
            if (
                completed
                or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 32
            ):  
                if prompts.shape[1] == y.shape[1]:
                    raise SyntaxError(
                        "well trained model shouldn't reach here."
                    )
                lengths = torch.sum(y != self.NUM_AUDIO_TOKENS, dim=1)
                avg_logprobs = sum_logprobs / lengths ** length_penalty
                # choose the best beam according to sum_logprobs
                best_beam = y[torch.argmax(avg_logprobs), :]
                worst_beam = y[torch.argmin(avg_logprobs), :]
                # strip all eos tokens
                best_beam = best_beam[best_beam != self.NUM_AUDIO_TOKENS]
                worst_beam = worst_beam[worst_beam != self.NUM_AUDIO_TOKENS]
                if return_worst:
                    y = worst_beam.unsqueeze(0)
                else:
                    y = best_beam.unsqueeze(0)
                print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]")
                break

            y = torch.concat([y, samples], dim=1)

        codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]]
        if self.num_quantizers == 1:
            return torch.stack(codes, dim=-1)

        if self.prefix_mode in [2, 4]:  # Exclude enrolled_phonemes
            enrolled_len = enroll_x_lens.max().item()
            # SOS + Synthesis Text + EOS
            text = torch.concat(
                [
                    text[:, :1],
                    text[:, enrolled_len - 1 :],
                ],
                dim=1,
            )
            text_len = text_len - (enrolled_len - 2)
            assert text.shape[0] == 1

        x = self.embed_scale * self.nar_text_embedding(text)
        # Add language embedding
        prompt_language_id = prompt_language.to(x.device)
        text_language_id = text_language.to(x.device)
        src_lang_emb = self.embed_scale * self.nar_language_embedding(prompt_language_id)
        tgt_lang_emb = self.embed_scale * self.nar_language_embedding(text_language_id)
        x[:, :enroll_x_lens, :] += src_lang_emb
        x[:, enroll_x_lens:, :] += tgt_lang_emb
        x = self.nar_text_prenet(x)
        x_pos = self.nar_text_position(text)

        if self.prefix_mode == 0:
            for i, predict_layer in enumerate(
                self.nar_predict_layers
            ):
                y_pos = self.nar_audio_prenet(y_emb)
                y_pos = self.nar_audio_position(y_pos)
                xy_pos = torch.concat([x, y_pos], dim=1)

                xy_dec, _ = self.nar_decoder(
                    (xy_pos, self.nar_stage_embeddings[i].weight)
                )
                logits = predict_layer(xy_dec[:, text_len + prefix_len :])

                samples = torch.argmax(logits, dim=-1)
                codes.append(samples)

                if i < self.num_quantizers - 2:
                    y_emb[:, :prefix_len] += self.embed_scale * self.nar_audio_embeddings(
                        prompts[..., i + 1]
                    )[0]
                    y_emb[:, prefix_len:] += self.embed_scale * self.nar_audio_embeddings(samples)[0]
        else:
            y_pos = self.nar_audio_position(y[:, int(self.ar_audio_prepend_bos):])
            
            ref_at_emb = self.embed_scale * self.nar_audio_embeddings(prompts)[0] + src_lang_emb
            est_at = y[:, prefix_len+int(self.ar_audio_prepend_bos):].unsqueeze(-1)
            # 
            for i in range(1, 8):
                y_emb, _ = self.nar_audio_embeddings(est_at)
                y_emb = self.embed_scale * y_emb + tgt_lang_emb
                
                y_emb = torch.concat([ref_at_emb, y_emb], dim=1)
                xy_pos = torch.concat([x+x_pos, y_emb+y_pos], dim=1)

                xy_dec = self.nar_decoder(
                    xy_pos
                )
                logits = self.nar_predict_layers[i-1](xy_dec[:, text_len + prefix_len :])
                # print(logits.size(), xy_pos.size(), xy_dec.size())
                samples = torch.argmax(logits, dim=-1)
                est_at = torch.concat([est_at, samples.unsqueeze(-1)], dim=-1)
                codes.append(samples)

        assert len(codes) == self.num_quantizers
        return torch.stack(codes, dim=-1)
            
def top_k_top_p_filtering(

    logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1

):
    if top_k > 0:
        top_k = min(
            max(top_k, min_tokens_to_keep), logits.size(-1)
        )  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(
            F.softmax(sorted_logits, dim=-1), dim=-1
        )

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
            ..., :-1
        ].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(
            1, sorted_indices, sorted_indices_to_remove
        )
        logits[indices_to_remove] = filter_value
    return logits


def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
    if temperature != 1.0:
        logits = logits / temperature
    # Top-p/top-k filtering
    logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
    # Sample
    token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
    logprobs = F.log_softmax(logits.float(), dim=-1)
    current_logprobs = logprobs[torch.arange(logprobs.shape[0]), token.squeeze(1)]
    return token, current_logprobs

class SLSTM(nn.Module):
    def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True, bidirectional=False):
        super().__init__()
        self.skip = skip
        self.lstm = nn.LSTM(dimension, dimension, num_layers, bidirectional=bidirectional)            
        if bidirectional:
            self.out_fc = nn.Linear(dimension*2, dimension)
        else:
            self.out_fc = None

    def forward(self, x, hidden=None):
        x = x.permute(2, 0, 1)
        y, hidden = self.lstm(x, hidden)
        if self.out_fc is not None:
            y = self.out_fc(y)
        if self.skip:
            y = y + x
        y = y.permute(1, 2, 0)
        return y, hidden
    
class EncodecDecoderLstm(nn.Module):
    def __init__(self, dictionary, emb_dim, 

                 out_dim=None,

                 num_layers=3, lstm_skip=True, lstm_bidire=False,

                 activation_param={'alpha': 1.0}, **kwargs):
        super().__init__()
        
        # Identity()
        if out_dim is None:
            out_dim = emb_dim
        self.slstm = SLSTM(dimension=out_dim, num_layers=num_layers, skip=lstm_skip, bidirectional=lstm_bidire)
        self.elu = nn.ELU(**activation_param)
        self.embedding_dim = emb_dim
        self.padding_idx = dictionary.pad()
        self.emb = nn.Embedding(len(dictionary), emb_dim, dictionary.pad_index)
    
    def forward(self, x, hidden=None):
        """

        Args:

            x (_type_): B,T,D

        """
        # print(x.size())
        quantized_out = self.emb(x)
        out, hidden = self.slstm(quantized_out.permute(0,2,1), hidden)
        out = self.elu(out)
        return out.permute(0,2,1), hidden

class NATEncodecDecoderLstm(nn.Module):
    def __init__(self, codecs, dictionary, emb_dim, 

                 out_dim=None,

                 num_layers=3, lstm_skip=True, lstm_bidire=False,

                 activation_param={'alpha': 1.0}, **kwargs):
        super().__init__()
        
        # Identity()
        if out_dim is None:
            out_dim = emb_dim
        self.slstm = SLSTM(dimension=out_dim, num_layers=num_layers, skip=lstm_skip, bidirectional=lstm_bidire)
        self.elu = nn.ELU(**activation_param)
        self.codecs = codecs
        self.embedding_dim = emb_dim
        self.padding_idx = dictionary.pad()
        self.emb_list = nn.ModuleList(
            [nn.Embedding(len(dictionary), emb_dim, dictionary.pad_index) for i in range(len(self.codecs))]
        )
    
    def forward(self, x, hidden=None):
        """

        Args:

            x (_type_): B,T,D

        """
        if len(x.size()) == 2:
            x = x.unsqueeze(-1)
        
        if x.size(2) != len(self.codecs) and x.size(1) == len(self.codecs):
            x = x.permute(0, 2, 1)
        
        quantized_out = 0
        for i in range(x.size(2)):
            quantized = self.emb_list[i](x[: , :, i])
            quantized_out = quantized_out + quantized
        # quantized_out = quantized_out / len(self.codecs)
        
        out, hidden = self.slstm(quantized_out.permute(0,2,1), hidden)
        out = self.elu(out)
        return out.permute(0,2,1), hidden

AutoModel.register(VallexConfig, VALLE)