# coding=utf-8 # Copyright 2022 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2-Conformer model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from transformers.activations import ACT2FN from transformers.deepspeed import is_deepspeed_zero3_enabled from transformers.modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers.models.wav2vec2_conformer.configuration_wav2vec2_conformer import Wav2Vec2ConformerConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2ConformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-conformer-rope-large-960h-ft" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 64.21 WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-conformer-rel-pos-large", # See all Wav2Vec2Conformer models at https://huggingface.co/models?filter=wav2vec2-conformer ] @dataclass # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2ConformerSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module): """Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf """ def __init__(self, config): super().__init__() dim = config.hidden_size // config.num_attention_heads base = config.rotary_embedding_base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states): sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) cos_embeddings = embeddings.cos()[:, None, None, :] sin_embeddings = embeddings.sin()[:, None, None, :] self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]) return self.cached_rotary_positional_embedding class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module): """Relative positional encoding module.""" def __init__(self, config): super().__init__() self.max_len = config.max_source_positions self.d_model = config.hidden_size self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) def extend_pe(self, x): # Reset the positional encodings if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` is the position of query vector and `j` is the # position of key vector. We use positive relative positions when keys # are to the left (i>j) and negative relative positions otherwise (iWav2Vec2Conformer class Wav2Vec2ConformerSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2ConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = torch.nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = torch.nn.GLU(dim=1) self.depthwise_conv = torch.nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=(config.conv_depthwise_kernel_size - 1) // 2, groups=config.hidden_size, bias=False, ) self.batch_norm = torch.nn.BatchNorm1d(config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = torch.nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = torch.nn.Dropout(config.conformer_conv_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerSelfAttention(nn.Module): """Construct an Wav2Vec2ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config): super().__init__() self.head_size = config.hidden_size // config.num_attention_heads self.num_heads = config.num_attention_heads self.position_embeddings_type = config.position_embeddings_type self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.attention_dropout) self.dropout_p = config.attention_dropout self.is_causal = config.is_causal if self.position_embeddings_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_embeddings_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" ) query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False): hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=self.dropout_p, is_causal=self.is_causal) probs = None # # apply attention_mask if necessary # if attention_mask is not None: # scores = scores + attention_mask # # => (batch, head, time1, time2) # probs = torch.softmax(scores, dim=-1) # probs = self.dropout(probs) # # => (batch, head, time1, d_k) # hidden_states = torch.matmul(probs, value) # => (batch, time1, hidden_size) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, hidden_size = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., : self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2 :] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view( relative_position_embeddings.size(0), -1, self.num_heads, self.head_size ) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class Wav2Vec2ConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.attention_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = Wav2Vec2ConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = torch.nn.Dropout(dropout) self.self_attn = Wav2Vec2ConformerSelfAttention(config) # Conformer Convolution self.conv_module = Wav2Vec2ConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = Wav2Vec2ConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class Wav2Vec2ConformerEncoder(nn.Module): def __init__(self, config, is_causal=False): super().__init__() config.is_causal = is_causal self.config = config if config.position_embeddings_type == "relative": self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config) elif config.position_embeddings_type == "rotary": self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config) else: self.embed_positions = None self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2ConformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, relative_position_embeddings, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GumbelVectorQuantizer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2ConformerConfig base_model_prefix = "wav2vec2_conformer" main_input_name = "input_values" _keys_to_ignore_on_load_missing = [r"position_ids"] supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ConformerForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2ConformerGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2ConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, Wav2Vec2ConformerPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2ConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Wav2Vec2ConformerEncoder, Wav2Vec2ConformerFeatureEncoder)): module.gradient_checkpointing = value WAV2VEC2_CONFORMER_START_DOCSTRING = r""" Wav2Vec2Conformer was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV2VEC2_CONFORMER_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2Conformer Model transformer outputting raw hidden-states without any specific head on top.", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config) self.feature_projection = Wav2Vec2ConformerFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = Wav2Vec2ConformerEncoder(config) self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a quantizer and `VQ` head on top.""", WAV2VEC2_CONFORMER_START_DOCSTRING ) class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @staticmethod # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ConformerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( ... _compute_mask_indices, ... _sample_negative_indices, ... ) >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ConformerForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout = nn.Dropout(config.final_dropout) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states): hidden_states = hidden_states.unsqueeze(1) hidden_states = nn.functional.unfold( hidden_states, (self.kernel_size, self.in_conv_dim), stride=(1, self.in_conv_dim), dilation=(self.dilation, 1), ) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.kernel(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2Conformer Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )