Spaces:
Runtime error
Runtime error
File size: 2,928 Bytes
062c36e 25562f7 112328a c23e33b 062c36e 25562f7 062c36e 25562f7 c23e33b ce7cb88 c23e33b 25562f7 ad38258 062c36e 25562f7 3790fed 25562f7 112328a 25562f7 ad38258 25562f7 c19a330 112328a e8e558d 25562f7 062c36e 25562f7 3790fed c65a561 3790fed 1aeb205 3790fed 6b58d7e 3790fed bcc9e8d 112328a 25562f7 112328a 25562f7 062c36e 25562f7 062c36e 25562f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
from fastapi import Depends, FastAPI, HTTPException, status
from sqlalchemy.orm import Session
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import schemas, models
from transformers import pipeline
import database
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
models.database.Base.metadata.create_all(bind=database.engine)
pipe = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
# Database session dependency
def get_db():
db = database.SessionLocal()
try:
yield db
finally:
db.close()
@app.post("/analyze_sentiment")
def create_sentiment_result(sentiment_result: schemas.SentimentResultCreate,text_input: str,db: Session = Depends(get_db))->JSONResponse:
try:
# Perform input validation
if not isinstance(text_input, str) or not text_input.strip():
raise HTTPException(
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
detail="Invalid text input"
)
text_content = text_input
sentiment_analysis_result = pipe(text_content)
# Create a new SentimentResult instance
new_sentiment_result = models.SentimentResult(
score=sentiment_analysis_result[0]['score'],
label=sentiment_analysis_result[0]['label'],
text_input=text_content
)
# Add the new SentimentResult to the database
db.add(new_sentiment_result)
db.commit()
db.refresh(new_sentiment_result)
# Convert datetime objects to strings
created_at_str = new_sentiment_result.created_at.strftime("%Y-%m-%dT%H:%M:%SZ")
textinput_dict = {
"id": new_sentiment_result.id,
"text_input": new_sentiment_result.text_input,
"score": new_sentiment_result.score,
"label": new_sentiment_result.label,
"created_at": created_at_str,
}
return JSONResponse(content=textinput_dict, status_code=status.HTTP_201_CREATED)
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"An error occurred: {str(e)}"
)
@app.delete("/sentiment/{id}", status_code=status.HTTP_204_NO_CONTENT)
def delete_sentiment_result(id: int, db: Session = Depends(get_db)):
# Retrieve the sentiment result and check for existence
sentiment_result_to_delete = db.query(models.SentimentResult).filter(models.SentimentResult.id == id).first()
if sentiment_result_to_delete is None:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"SentimentResult with ID {id} not found")
# Delete the sentiment result
db.delete(sentiment_result_to_delete)
db.commit()
|