File size: 2,928 Bytes
062c36e
25562f7
112328a
c23e33b
062c36e
25562f7
062c36e
25562f7
 
c23e33b
 
 
ce7cb88
c23e33b
 
 
 
25562f7
ad38258
062c36e
25562f7
 
 
 
 
 
 
3790fed
 
25562f7
112328a
 
 
 
 
 
 
25562f7
ad38258
25562f7
 
 
c19a330
112328a
e8e558d
25562f7
062c36e
25562f7
 
 
 
3790fed
c65a561
3790fed
1aeb205
3790fed
 
 
6b58d7e
3790fed
 
bcc9e8d
112328a
25562f7
112328a
 
 
 
25562f7
 
 
062c36e
 
 
 
25562f7
062c36e
 
 
 
 
25562f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from fastapi import Depends, FastAPI, HTTPException, status
from sqlalchemy.orm import Session
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import schemas, models
from transformers import pipeline
import database

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

models.database.Base.metadata.create_all(bind=database.engine)
pipe = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
# Database session dependency
def get_db():
    db = database.SessionLocal()
    try:
        yield db
    finally:
        db.close()

@app.post("/analyze_sentiment")
def create_sentiment_result(sentiment_result: schemas.SentimentResultCreate,text_input: str,db: Session = Depends(get_db))->JSONResponse:
    try:
        # Perform input validation
        if not isinstance(text_input, str) or not text_input.strip():
            raise HTTPException(
                status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
                detail="Invalid text input"
            )

        text_content = text_input
        sentiment_analysis_result = pipe(text_content)

        # Create a new SentimentResult instance
        new_sentiment_result = models.SentimentResult(
            score=sentiment_analysis_result[0]['score'],
            label=sentiment_analysis_result[0]['label'],
            text_input=text_content
        )

        # Add the new SentimentResult to the database
        db.add(new_sentiment_result)
        db.commit()
        db.refresh(new_sentiment_result)
        # Convert datetime objects to strings
        created_at_str = new_sentiment_result.created_at.strftime("%Y-%m-%dT%H:%M:%SZ")
        textinput_dict = {
             "id": new_sentiment_result.id,
             "text_input": new_sentiment_result.text_input,
             "score": new_sentiment_result.score,
             "label": new_sentiment_result.label,
             "created_at": created_at_str,
            }
     
        return JSONResponse(content=textinput_dict, status_code=status.HTTP_201_CREATED)
    
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=f"An error occurred: {str(e)}"
        )

@app.delete("/sentiment/{id}", status_code=status.HTTP_204_NO_CONTENT)
def delete_sentiment_result(id: int, db: Session = Depends(get_db)):
    # Retrieve the sentiment result and check for existence
    sentiment_result_to_delete = db.query(models.SentimentResult).filter(models.SentimentResult.id == id).first()

    if sentiment_result_to_delete is None:
        raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"SentimentResult with ID {id} not found")

    # Delete the sentiment result
    db.delete(sentiment_result_to_delete)
    db.commit()