xco2 commited on
Commit
563af6e
·
verified ·
1 Parent(s): 8fca5b2
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -226,6 +226,7 @@ class DDIMSampler(Sampler):
226
  steps = np.concatenate((steps, steps[-1:]), axis=0)
227
 
228
  x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device) # 32, 32
 
229
  for i in trange(len(steps) - 1):
230
  x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
231
 
@@ -486,7 +487,7 @@ def init_webui(unet, vae, normal_t):
486
  looper = sampler.sample_loop(unet, vae.middle_c, batch_size, step_value, shape=img_size, eta=1.)
487
  else:
488
  input_image_value = Image.fromarray(input_image_value).resize((img_size[0] * 8, img_size[1] * 8),
489
- Image.ANTIALIAS)
490
  input_image_value = np.array(input_image_value, dtype=np.float32) / 255.
491
  input_image_value = np.transpose(input_image_value, (2, 0, 1))
492
  input_image_value = torch.Tensor([input_image_value]).to(device)
@@ -537,7 +538,7 @@ def init_webui(unet, vae, normal_t):
537
  inputs=[step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
538
  outputs=output_images_u,
539
  fn=process_image_u,
540
- # cache_examples=True,
541
  )
542
  with gr.Tab(label="image to image"):
543
  with gr.Column():
@@ -565,7 +566,7 @@ def init_webui(unet, vae, normal_t):
565
  inputs=[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
566
  outputs=output_images,
567
  fn=process_image,
568
- # cache_examples=True,
569
  )
570
 
571
  start_button.click(process_image,
 
226
  steps = np.concatenate((steps, steps[-1:]), axis=0)
227
 
228
  x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device) # 32, 32
229
+ print("sample", steps)
230
  for i in trange(len(steps) - 1):
231
  x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
232
 
 
487
  looper = sampler.sample_loop(unet, vae.middle_c, batch_size, step_value, shape=img_size, eta=1.)
488
  else:
489
  input_image_value = Image.fromarray(input_image_value).resize((img_size[0] * 8, img_size[1] * 8),
490
+ resample=Image.BILINEAR)
491
  input_image_value = np.array(input_image_value, dtype=np.float32) / 255.
492
  input_image_value = np.transpose(input_image_value, (2, 0, 1))
493
  input_image_value = torch.Tensor([input_image_value]).to(device)
 
538
  inputs=[step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
539
  outputs=output_images_u,
540
  fn=process_image_u,
541
+ cache_examples=False,
542
  )
543
  with gr.Tab(label="image to image"):
544
  with gr.Column():
 
566
  inputs=[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
567
  outputs=output_images,
568
  fn=process_image,
569
+ cache_examples=False,
570
  )
571
 
572
  start_button.click(process_image,