xco2 commited on
Commit
705238e
·
verified ·
1 Parent(s): 3b14f37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -7
app.py CHANGED
@@ -8,7 +8,7 @@ from tqdm import tqdm, trange
8
  from PIL import Image
9
 
10
 
11
- def random_clip(x, min=-1.5, max=1.5):
12
  if isinstance(x, np.ndarray):
13
  return np.clip(x, min, max)
14
  elif isinstance(x, torch.Tensor):
@@ -221,12 +221,14 @@ class DDIMSampler(Sampler):
221
  axis=0)
222
  else:
223
  # 均匀取子集
 
224
  steps = np.linspace(noise_steps, 1, step)
 
 
225
  steps = np.floor(steps)
226
- steps = np.concatenate((steps, steps[-1:]), axis=0)
227
 
228
  x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device) # 32, 32
229
- print("sample", steps)
230
  for i in trange(len(steps) - 1):
231
  x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
232
 
@@ -499,8 +501,15 @@ def init_webui(unet, vae, normal_t):
499
  batch_size,
500
  step_value,
501
  eta=1.)
 
 
502
  for i in progress.tqdm(range(1, step_value + 1)):
503
- output = next(looper)
 
 
 
 
 
504
 
505
  output = sampler.decode_img(vae, output)
506
  output = np.clip(output, 0, 255)
@@ -534,11 +543,11 @@ def init_webui(unet, vae, normal_t):
534
  # 创建输出组件
535
  output_images_u = gr.Gallery(show_label=False, height=400, columns=5)
536
  gr.Examples(
537
- examples=[[40, 2, "DDIM", 256, 255395]],
538
  inputs=[step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
539
  outputs=output_images_u,
540
  fn=process_image_u,
541
- cache_examples=False,
542
  )
543
  with gr.Tab(label="image to image"):
544
  with gr.Column():
@@ -566,7 +575,7 @@ def init_webui(unet, vae, normal_t):
566
  inputs=[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
567
  outputs=output_images,
568
  fn=process_image,
569
- cache_examples=False,
570
  )
571
 
572
  start_button.click(process_image,
 
8
  from PIL import Image
9
 
10
 
11
+ def random_clip(x, min=-1.3, max=1.3):
12
  if isinstance(x, np.ndarray):
13
  return np.clip(x, min, max)
14
  elif isinstance(x, torch.Tensor):
 
221
  axis=0)
222
  else:
223
  # 均匀取子集
224
+ # print(noise_steps, 1, step)
225
  steps = np.linspace(noise_steps, 1, step)
226
+ # print("steps", len(steps))
227
+
228
  steps = np.floor(steps)
229
+ # steps = np.concatenate((steps, steps[-1:]), axis=0)
230
 
231
  x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device) # 32, 32
 
232
  for i in trange(len(steps) - 1):
233
  x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
234
 
 
501
  batch_size,
502
  step_value,
503
  eta=1.)
504
+ # print(step_value)
505
+ ss = 0
506
  for i in progress.tqdm(range(1, step_value + 1)):
507
+ try:
508
+ output = next(looper)
509
+ ss += 1
510
+ except StopIteration:
511
+ # print("StopIteration", ss)
512
+ break
513
 
514
  output = sampler.decode_img(vae, output)
515
  output = np.clip(output, 0, 255)
 
543
  # 创建输出组件
544
  output_images_u = gr.Gallery(show_label=False, height=400, columns=5)
545
  gr.Examples(
546
+ examples=[[60, 4, "DDIM", 256, 255392]], # 255392
547
  inputs=[step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
548
  outputs=output_images_u,
549
  fn=process_image_u,
550
+ cache_examples=True,
551
  )
552
  with gr.Tab(label="image to image"):
553
  with gr.Column():
 
575
  inputs=[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
576
  outputs=output_images,
577
  fn=process_image,
578
+ cache_examples=True,
579
  )
580
 
581
  start_button.click(process_image,