import numpy as np import gradio as gr import tensorflow as tf from io import StringIO from PIL import Image from ultralytics import YOLO import cv2 from datetime import datetime labels = [] classification_model = tf.keras.models.load_model('./models.h5') detection_model = YOLO('./best.pt') with open("labels.txt") as f: for line in f: labels.append(line.replace('\n', '')) def classify_image(inp): # Create a copy of the input array to avoid reference issues inp_copy = np.copy(inp) # Resize the input image to the expected shape (224, 224) inp_copy = Image.fromarray(inp_copy) inp_copy = inp_copy.resize((224, 224)) inp_copy = np.array(inp_copy) inp_copy = inp_copy.reshape((-1, 224, 224, 3)) inp_copy = tf.keras.applications.efficientnet.preprocess_input(inp_copy) prediction = classification_model.predict(inp_copy).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(90)} return confidences def animal_detect_and_classify(img, detect_results): img = np.array(img) combined_results = [] # Iterate over detections for result in detect_results: for box in result.boxes: # print(box) # Crop the RoI x1, y1, x2, y2 = map(int, box.xyxy[0]) detect_img = img[y1:y2, x1:x2] # Convert the image to RGB format # detect_img = cv2.cvtColor(detect_img, cv2.COLOR_BGR2RGB) # Resize the input image to the expected shape (224, 224) detect_img = cv2.resize(detect_img, (224, 224)) # Convert the image to a numpy array inp_array = np.array(detect_img) # Reshape the array to match the expected input shape inp_array = inp_array.reshape((-1, 224, 224, 3)) # Preprocess the input array inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array) # Make predictions using the classification model prediction = classification_model.predict(inp_array) # Map predictions to labels threshold = 0.66 confidences_classification = {labels[i]: float(prediction[0][i]) for i in range(90)} print(confidences_classification) predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "animal" for pred in prediction] combined_results.append(((x1, y1, x2, y2), predicted_labels)) return combined_results def generate_color(class_name): # Generate a hash from the class name color_hash = hash(class_name) # Normalize the hash value to fit within the range of valid color values (0-255) color_hash = abs(color_hash) % 16777216 R = color_hash//(256*256) G = (color_hash//256) % 256 B = color_hash % 256 # Convert the hash value to RGB color format color = (R, G, B) return color def plot_detected_rectangles(image, detections): # Create a copy of the image to draw on image = np.array(image) img_with_rectangles = image.copy() # Iterate over each detected rectangle and its corresponding class name for rectangle, class_names in detections: if class_names[0] == "unknown": continue # Extract the coordinates of the rectangle x1, y1, x2, y2 = rectangle # Generate a random color color = generate_color(class_names[0]) # Draw the rectangle on the image cv2.rectangle(img_with_rectangles, (x1, y1), (x2, y2), color, 2) # Put the class names above the rectangle for i, class_name in enumerate(class_names): cv2.putText(img_with_rectangles, class_name, (x1, y1 - 10 - i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) return img_with_rectangles def detection_image(img, conf_threshold, iou_threshold): results = detection_model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) combined_results = animal_detect_and_classify(img, results) plotted_image = plot_detected_rectangles(img, combined_results) return Image.fromarray(plotted_image) io1 = gr.Interface(classify_image, gr.Image(), gr.Label(num_top_classes=3)) io2 = gr.Interface( fn=detection_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") ], outputs=gr.Image(type="pil", label="Result"), title="Animal Detection", description="Upload images for inference. The Ultralytics YOLOv8n model is used as pretrained model", ) if __name__ == "__main__": gr.TabbedInterface( [io1, io2], ["Classification", "Object Detection"] ).launch(debug=True)