Spaces:
Runtime error
Runtime error
File size: 5,213 Bytes
38d4385 890b83b a9f1bab 38d4385 a9f1bab 38d4385 890b83b 38d4385 fba92a9 765c987 890b83b a9f1bab 38d4385 1f96cd2 765c987 1f96cd2 765c987 38d4385 a9f1bab 890b83b fba92a9 38d4385 890b83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import numpy as np
from fastapi import FastAPI, File, UploadFile
import tensorflow as tf
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
import cv2
from datetime import datetime
from fastapi.responses import FileResponse
app = FastAPI()
labels = []
classification_model = tf.keras.models.load_model('./models.h5')
detection_model = YOLO('./best.pt')
with open("labels.txt") as f:
for line in f:
labels.append(line.replace('\n', ''))
def classify_image(img):
# Resize the input image to the expected shape (224, 224)
img_array = np.asarray(img.resize((224, 224)))[..., :3]
img_array = img_array.reshape((1, 224, 224, 3)) # Add batch dimension
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array)
prediction = classification_model.predict(img_array).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
# Sort the confidences dictionary by value and get the top 3 items
# top_3_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:3])
return confidences
def animal_detect_and_classify(img_path):
# Read the image
img = cv2.imread(img_path)
# Pass the image through the detection model and get the result
detect_results = detection_model(img)
combined_results = []
# print("dss", detect_results[0])
# Iterate over the detected objects
# Iterate over detections
for result in detect_results:
for box in result.boxes:
# print(box)
# Crop the RoI
x1, y1, x2, y2 = map(int, box.xyxy[0])
detect_img = img[y1:y2, x1:x2]
# Convert the image to RGB format
detect_img = cv2.cvtColor(detect_img, cv2.COLOR_BGR2RGB)
# Resize the input image to the expected shape (224, 224)
detect_img = cv2.resize(detect_img, (224, 224))
# Convert the image to a numpy array
inp_array = np.array(detect_img)
# Reshape the array to match the expected input shape
inp_array = inp_array.reshape((-1, 224, 224, 3))
# Preprocess the input array
inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array)
# Make predictions using the classification model
prediction = classification_model.predict(inp_array)
# Map predictions to labels
threshold = 0.75
predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "animal" for pred in prediction]
print(predicted_labels)
combined_results.append(((x1, y1, x2, y2), predicted_labels))
return combined_results
def generate_color(class_name):
# Generate a hash from the class name
color_hash = hash(class_name)
print(color_hash)
# Normalize the hash value to fit within the range of valid color values (0-255)
color_hash = abs(color_hash) % 16777216
R = color_hash//(256*256)
G = (color_hash//256) % 256
B = color_hash % 256
# Convert the hash value to RGB color format
color = (R, G, B)
return color
def plot_detected_rectangles(image, detections, output_path):
# Create a copy of the image to draw on
img_with_rectangles = image.copy()
# Iterate over each detected rectangle and its corresponding class name
for rectangle, class_names in detections:
# Extract the coordinates of the rectangle
x1, y1, x2, y2 = rectangle
# Generate a random color
color = generate_color(class_names[0])
# Draw the rectangle on the image
cv2.rectangle(img_with_rectangles, (x1, y1), (x2, y2), color, 2)
# Put the class names above the rectangle
for i, class_name in enumerate(class_names):
cv2.putText(img_with_rectangles, class_name, (x1, y1 - 10 - i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Show the image with rectangles and class names
cv2.imwrite(output_path, img_with_rectangles)
# Call the animal_detect_and_classify function to get detections
detections = animal_detect_and_classify('/content/cat_tiger.jpg')
# Plot the detected rectangles with their corresponding class names
plot_detected_rectangles(cv2.imread('/content/cat_tiger.jpg'), detections)
@app.post("/predict/v2")
async def predict_v2(file: UploadFile = File(...)):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = timestamp + file.filename
contents = await file.read()
image = Image.open(BytesIO(contents))
image.save("input/" + filename)
detections = animal_detect_and_classify("input/" + filename)
plot_detected_rectangles(cv2.imread("input/" + filename), detections, "output/" + filename)
return {"message": "Detection and classification completed successfully"}
@app.get("/image/")
async def get_image(image_name: str):
# Assume the images are stored in a directory named "images"
image_path = f"images/{image_name}"
return FileResponse(image_path)
@app.post("/predict")
async def predict(file: bytes = File(...)):
img = Image.open(BytesIO(file))
confidences = classify_image(img)
return confidences
|