xcurvnubaim
refactor: change cv2 to pillow to read image
f769dab
import numpy as np
from fastapi import FastAPI, File, UploadFile, HTTPException
import tensorflow as tf
from PIL import Image
from io import BytesIO
from ultralytics import YOLO
import cv2
from datetime import datetime
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
labels = []
classification_model = tf.keras.models.load_model('./models.h5')
detection_model = YOLO('./best.pt')
with open("labels.txt") as f:
for line in f:
labels.append(line.replace('\n', ''))
def classify_image(img):
# Resize the input image to the expected shape (224, 224)
img_array = np.asarray(img.resize((224, 224)))[..., :3]
img_array = img_array.reshape((1, 224, 224, 3)) # Add batch dimension
img_array = tf.keras.applications.efficientnet.preprocess_input(img_array)
prediction = classification_model.predict(img_array).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(90)}
# Sort the confidences dictionary by value and get the top 3 items
# top_3_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:3])
return confidences
def animal_detect_and_classify(img_path):
# Read the image using Pillow
img = Image.open(img_path)
# Pass the image through the detection model and get the result
detect_results = detection_model(np.array(img))
combined_results = []
# Iterate over detections
for result in detect_results:
flag = False
for box in result.boxes:
flag = True
# Crop the Region of Interest (RoI)
x1, y1, x2, y2 = map(int, box.xyxy[0])
detect_img = img.crop((x1, y1, x2, y2)).resize((224, 224))
# Convert the image to a numpy array
inp_array = np.array(detect_img)
# Reshape the array to match the expected input shape
inp_array = inp_array.reshape((-1, 224, 224, 3))
# Preprocess the input array
inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array)
# Make predictions using the classification model
prediction = classification_model.predict(inp_array)
# Map predictions to labels
threshold = 0.66
predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "animal" for pred in prediction]
print(predicted_labels)
combined_results.append(((x1, y1, x2, y2), predicted_labels))
if flag:
continue
# If no detections found, consider the whole image
x2, y2 = img.size
detect_img = img.resize((224, 224))
inp_array = np.array(detect_img).reshape((-1, 224, 224, 3))
inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array)
prediction = classification_model.predict(inp_array)
threshold = 0.66
predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "unknown" for pred in prediction]
combined_results.append(((0, 0, x2, y2), predicted_labels))
return combined_results
def generate_color(class_name):
# Generate a hash from the class name
color_hash = hash(class_name)
print(color_hash)
# Normalize the hash value to fit within the range of valid color values (0-255)
color_hash = abs(color_hash) % 16777216
R = color_hash//(256*256)
G = (color_hash//256) % 256
B = color_hash % 256
# Convert the hash value to RGB color format
color = (R, G, B)
return color
def plot_detected_rectangles(image, detections, output_path):
# Create a copy of the image to draw on
img_with_rectangles = image.copy()
# Iterate over each detected rectangle and its corresponding class name
for rectangle, class_names in detections:
if class_names[0] == "unknown":
continue
# Extract the coordinates of the rectangle
x1, y1, x2, y2 = rectangle
# Generate a random color
color = generate_color(class_names[0])
# Draw the rectangle on the image
cv2.rectangle(img_with_rectangles, (x1, y1), (x2, y2), color, 2)
# Put the class names above the rectangle
for i, class_name in enumerate(class_names):
cv2.putText(img_with_rectangles, class_name, (x1, y1 - 10 - i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Show the image with rectangles and class names
cv2.imwrite(output_path, img_with_rectangles)
@app.post("/predict/v2")
async def predict_v2(file: UploadFile = File(...)):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_")
filename = timestamp + file.filename
contents = await file.read()
image = Image.open(BytesIO(contents))
image.save("input/" + filename)
detections = animal_detect_and_classify("input/" + filename)
class_names = [class_name[0] for _, class_name in detections]
plot_detected_rectangles(cv2.imread("input/" + filename), detections, "output/" + filename)
return {
"message": "Detection and classification completed successfully",
"out": filename,
"class_names": class_names
}
IMAGE_DIR = Path("output")
@app.get("/image/")
async def get_image(image_name: str):
# Sanitize the image_name to prevent directory traversal attacks
if "../" in image_name:
raise HTTPException(status_code=400, detail="Invalid image name")
# Construct the image path
image_path = IMAGE_DIR / image_name
# Check if the image exists
if not image_path.exists() or not image_path.is_file():
raise HTTPException(status_code=404, detail="Image not found")
# Return the image file
return FileResponse(image_path)
@app.post("/predict")
async def predict(file: bytes = File(...)):
img = Image.open(BytesIO(file))
confidences = classify_image(img)
return confidences