import numpy as np from fastapi import FastAPI, File, UploadFile, HTTPException import tensorflow as tf from PIL import Image from io import BytesIO from ultralytics import YOLO import cv2 from datetime import datetime from fastapi.responses import FileResponse from fastapi.middleware.cors import CORSMiddleware from pathlib import Path app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) labels = [] classification_model = tf.keras.models.load_model('./models.h5') detection_model = YOLO('./best.pt') with open("labels.txt") as f: for line in f: labels.append(line.replace('\n', '')) def classify_image(img): # Resize the input image to the expected shape (224, 224) img_array = np.asarray(img.resize((224, 224)))[..., :3] img_array = img_array.reshape((1, 224, 224, 3)) # Add batch dimension img_array = tf.keras.applications.efficientnet.preprocess_input(img_array) prediction = classification_model.predict(img_array).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(90)} # Sort the confidences dictionary by value and get the top 3 items # top_3_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:3]) return confidences def animal_detect_and_classify(img_path): # Read the image using Pillow img = Image.open(img_path) # Pass the image through the detection model and get the result detect_results = detection_model(np.array(img)) combined_results = [] # Iterate over detections for result in detect_results: flag = False for box in result.boxes: flag = True # Crop the Region of Interest (RoI) x1, y1, x2, y2 = map(int, box.xyxy[0]) detect_img = img.crop((x1, y1, x2, y2)).resize((224, 224)) # Convert the image to a numpy array inp_array = np.array(detect_img) # Reshape the array to match the expected input shape inp_array = inp_array.reshape((-1, 224, 224, 3)) # Preprocess the input array inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array) # Make predictions using the classification model prediction = classification_model.predict(inp_array) # Map predictions to labels threshold = 0.66 predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "animal" for pred in prediction] print(predicted_labels) combined_results.append(((x1, y1, x2, y2), predicted_labels)) if flag: continue # If no detections found, consider the whole image x2, y2 = img.size detect_img = img.resize((224, 224)) inp_array = np.array(detect_img).reshape((-1, 224, 224, 3)) inp_array = tf.keras.applications.efficientnet.preprocess_input(inp_array) prediction = classification_model.predict(inp_array) threshold = 0.66 predicted_labels = [labels[np.argmax(pred)] if np.max(pred) >= threshold else "unknown" for pred in prediction] combined_results.append(((0, 0, x2, y2), predicted_labels)) return combined_results def generate_color(class_name): # Generate a hash from the class name color_hash = hash(class_name) print(color_hash) # Normalize the hash value to fit within the range of valid color values (0-255) color_hash = abs(color_hash) % 16777216 R = color_hash//(256*256) G = (color_hash//256) % 256 B = color_hash % 256 # Convert the hash value to RGB color format color = (R, G, B) return color def plot_detected_rectangles(image, detections, output_path): # Create a copy of the image to draw on img_with_rectangles = image.copy() # Iterate over each detected rectangle and its corresponding class name for rectangle, class_names in detections: if class_names[0] == "unknown": continue # Extract the coordinates of the rectangle x1, y1, x2, y2 = rectangle # Generate a random color color = generate_color(class_names[0]) # Draw the rectangle on the image cv2.rectangle(img_with_rectangles, (x1, y1), (x2, y2), color, 2) # Put the class names above the rectangle for i, class_name in enumerate(class_names): cv2.putText(img_with_rectangles, class_name, (x1, y1 - 10 - i*20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # Show the image with rectangles and class names cv2.imwrite(output_path, img_with_rectangles) @app.post("/predict/v2") async def predict_v2(file: UploadFile = File(...)): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_") filename = timestamp + file.filename contents = await file.read() image = Image.open(BytesIO(contents)) image.save("input/" + filename) detections = animal_detect_and_classify("input/" + filename) class_names = [class_name[0] for _, class_name in detections] plot_detected_rectangles(cv2.imread("input/" + filename), detections, "output/" + filename) return { "message": "Detection and classification completed successfully", "out": filename, "class_names": class_names } IMAGE_DIR = Path("output") @app.get("/image/") async def get_image(image_name: str): # Sanitize the image_name to prevent directory traversal attacks if "../" in image_name: raise HTTPException(status_code=400, detail="Invalid image name") # Construct the image path image_path = IMAGE_DIR / image_name # Check if the image exists if not image_path.exists() or not image_path.is_file(): raise HTTPException(status_code=404, detail="Image not found") # Return the image file return FileResponse(image_path) @app.post("/predict") async def predict(file: bytes = File(...)): img = Image.open(BytesIO(file)) confidences = classify_image(img) return confidences