import os import requests import gradio as gr from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Fetch token from environment variables CLOUDFLARE_TOKEN = os.getenv("CLOUDFLARE_TOKEN") if not CLOUDFLARE_TOKEN: raise EnvironmentError("CLOUDFLARE_TOKEN not found in environment variables.") # Function to send API requests to the Gemma model def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): try: # Construct the messages payload messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Define API endpoint and headers url = "https://api.cloudflare.com/client/v4/accounts/e16531aac7469b4b54ef1e8108e93495/ai/run/@cf/google/gemma-2b-it-lora" headers = { "Authorization": f"Bearer {CLOUDFLARE_TOKEN}", "Content-Type": "application/json", } # Payload with model settings and messages payload = { "messages": messages, "raw": "true", "lora": "1b3c4e5c-ba8a-4e98-973b-573c572cfb34", "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p, } # Make the API request response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: data = response.json() # Extract response content result = data.get("result", {}).get("response", "No response found.") return result else: return f"Error: {response.status_code} - {response.text}" except Exception as e: return f"An error occurred: {str(e)}" # Gradio Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()