File size: 3,865 Bytes
7c99e50
 
 
f52050f
 
7c99e50
f52050f
7c99e50
f52050f
 
 
 
7c99e50
f52050f
 
7c99e50
 
 
4f59075
f52050f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99e50
f52050f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4222109
 
 
 
 
7c99e50
964f66f
7c99e50
 
 
 
 
4222109
c659e77
7c99e50
4222109
7c99e50
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import re
import gradio as gr

from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval

# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)

# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)



other_benifits = '''Extract the following information in the given format:
        {'other_benefits_and_information': {
            '401k eru: {'This Period':'', 'Year-to-Date':''}},
            'quota summary':
                            {
                            'sick:': '',
                            'vacation:': '',
                            }
            'payment method': '',                                               
            'Amount': ''
                            }
'''

tax_deductions = '''Extract the following information in the given format:
                {
                'tax_deductions': {
                    'federal:': {
                        'withholding tax:': {'Amount':'', 'Year-To_Date':""},
                        'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
                        'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
                    'california:': {
                        'withholding tax:': {'Amount':'', 'Year-To_Date':""}, 
                        'ee disability tax:': {'Amount':'', 'Year-To_Date':""}}},
                }
'''

def demo(image_name, prompt):
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_name,
                },
                {"type": "text", "text":  prompt},
            ],
        }
    ]

    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=1500)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    try:
        # almost_json = output_text[0].replace('```\n', '').replace('\n```', '')
        almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
 
        json = literal_eval(almost_json)
    except:
        try:
            # almost_json = output_text[0].replace('```json\n', '').replace('\n```', '')
            almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
            json = literal_eval(almost_json)
        except:
            json = output_text[0]
    return json

def process_document(image):
    one = demo(image, other_benifits)
    two = demo(image, tax_deductions)
    json_op = {
        "tax_deductions": one,
        "other_benifits": two
              }
    return json_op

# article = "<p style='text-align: center'><a href='https://www.xelpmoc.in/' target='_blank'>Made by Xelpmoc</a></p>"

demo = gr.Interface(
    fn=process_document,
    inputs="image",
    outputs="json",
    title="PaySlip_Demo_Model",
    # article=article,
    enable_queue=True,
    examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
    cache_examples=False)

demo.launch()