PaySlip_Demo / app.py
xelpmocAI's picture
Removed manual to device to let accelerator handle it
2fecabe verified
raw
history blame
3.77 kB
import re
import gradio as gr
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
other_benifits = '''Extract the following information in the given format:
{'other_benefits_and_information': {
'401k eru: {'This Period':'', 'Year-to-Date':''}},
'quota summary':
{
'sick:': '',
'vacation:': '',
}
'payment method': 'eg. Direct payment',
'Amount': 'eg. 12.99'
}
'''
tax_deductions = '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To_Date':""}}},
}
'''
def demo(image_name, prompt):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_name,
},
{"type": "text", "text": prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1500)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
try:
# almost_json = output_text[0].replace('```\n', '').replace('\n```', '')
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
try:
# almost_json = output_text[0].replace('```json\n', '').replace('\n```', '')
almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
json = output_text[0]
return json
def process_document(image):
one = demo(image, other_benifits)
two = demo(image, tax_deductions)
json_op = {
"tax_deductions": one,
"other_benifits": two
}
return json_op
# article = "<p style='text-align: center'><a href='https://www.xelpmoc.in/' target='_blank'>Made by Xelpmoc</a></p>"
demo = gr.Interface(
fn=process_document,
inputs="image",
outputs="json",
title="PaySlip_Demo_Model",
# article=article,
enable_queue=True,
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
cache_examples=False)
demo.launch()