PaySlip_Demo / app.py
xelpmocAI's picture
keeping json and indentation
a515837 verified
raw
history blame
5.07 kB
import os
import tempfile
import gradio as gr
import numpy as np
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval
from PIL import Image
import json
# Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# Define your prompts
other_benifits = '''Extract the following information in the given format:
{'other_benefits_and_information': {
'401k eru: {'This Period':'', 'Year-to-Date':''}},
'quota summary':
{
'sick:': '',
'vacation:': '',
}
'payment method': 'eg. Direct payment',
'Amount': 'eg. 12.99'
}
'''
tax_deductions = '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
}
'''
def format_nested_dict(data, indent=0):
formatted_str = ""
indent_str = " " * indent # Indentation for the current level
for key, value in data.items():
# If value is a dictionary, recurse deeper
if isinstance(value, dict):
formatted_str += f"{indent_str}{key}:\n"
formatted_str += format_nested_dict(value, indent + 1)
else:
formatted_str += f"{indent_str}{key}: {value}\n"
return formatted_str
def process_function(image_path, prompt):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path, # Use the file path here
},
{"type": "text", "text": prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1500)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Handle output text to convert it into JSON
try:
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
try:
almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
json = output_text[0]
return json
def process_document(image):
# Save the uploaded image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
image = Image.fromarray(image) # Convert NumPy array to PIL Image
image.save(tmp_file.name) # Save the image to the temporary file
image_path = tmp_file.name # Get the path of the saved file
# Process the image with your model
one = process_function(image_path, other_benifits)
two = process_function(image_path, tax_deductions)
three = format_nested_dict(one)
four = format_nested_dict(two)
# Optionally, you can delete the temporary file after use
os.remove(image_path)
return one, three, two, four
# Create Gradio interface
demo = gr.Interface(
fn=process_document,
inputs="image", # Gradio will handle the image input
outputs=[
gr.JSON(label="Tax Deductions Information"), # First output box with heading
gr.Textbox(label="Other Benefits and Information"), # Second output box with heading
gr.JSON(label="Tax Deductions Information"), # First output box with heading
gr.Textbox(label="Other Benefits and Information") # Second output box with heading
],
title="<div style='text-align: center;'>Information Extraction From PaySlip</div>",
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
cache_examples=False
)
demo.launch()