xelpmocAI commited on
Commit
157798c
·
verified ·
1 Parent(s): 7f5acb9

few changes for logging

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -8,6 +8,9 @@ import torch
8
  from ast import literal_eval
9
  from PIL import Image
10
 
 
 
 
11
  # Load the model on the available device(s)
12
  model = Qwen2VLForConditionalGeneration.from_pretrained(
13
  "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
@@ -56,14 +59,14 @@ def demo(image_path, prompt):
56
  ],
57
  }
58
  ]
59
- print("1")
60
  # Preparation for inference
61
  text = processor.apply_chat_template(
62
  messages, tokenize=False, add_generation_prompt=True
63
  )
64
- print("2")
65
  image_inputs, video_inputs = process_vision_info(messages)
66
- print("3")
67
  inputs = processor(
68
  text=[text],
69
  images=image_inputs,
@@ -71,22 +74,23 @@ def demo(image_path, prompt):
71
  padding=True,
72
  return_tensors="pt",
73
  )
74
- print("4")
75
  inputs = inputs.to("cuda")
76
- print("5")
77
  # Inference: Generation of the output
78
  generated_ids = model.generate(**inputs, max_new_tokens=1500)
79
- print("6")
80
  generated_ids_trimmed = [
81
  out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
82
  ]
83
- print("7")
84
  output_text = processor.batch_decode(
85
  generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
86
  )
87
- print("8")
88
 
89
  # Handle output text to convert it into JSON
 
90
  try:
91
  almost_json = output_text[0].split('\n')[-1].split('\n')[0]
92
  json = literal_eval(almost_json)
@@ -100,9 +104,10 @@ def process_document(image):
100
  image = Image.fromarray(image) # Convert NumPy array to PIL Image
101
  image.save(tmp_file.name) # Save the image to the temporary file
102
  image_path = tmp_file.name # Get the path of the saved file
103
-
104
  # Process the image with your model
105
  one = demo(image_path, other_benifits)
 
106
  two = demo(image_path, tax_deductions)
107
  json_op = {
108
  "tax_deductions": one,
 
8
  from ast import literal_eval
9
  from PIL import Image
10
 
11
+ import logging
12
+ logging.basicConfig(level=logging.INFO)
13
+
14
  # Load the model on the available device(s)
15
  model = Qwen2VLForConditionalGeneration.from_pretrained(
16
  "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
 
59
  ],
60
  }
61
  ]
62
+ logging.info("Step 1: Preparing inference")
63
  # Preparation for inference
64
  text = processor.apply_chat_template(
65
  messages, tokenize=False, add_generation_prompt=True
66
  )
67
+ logging.info("2")
68
  image_inputs, video_inputs = process_vision_info(messages)
69
+ logging.info("3")
70
  inputs = processor(
71
  text=[text],
72
  images=image_inputs,
 
74
  padding=True,
75
  return_tensors="pt",
76
  )
77
+ logging.info("4")
78
  inputs = inputs.to("cuda")
79
+ logging.info("5")
80
  # Inference: Generation of the output
81
  generated_ids = model.generate(**inputs, max_new_tokens=1500)
82
+ logging.info("6")
83
  generated_ids_trimmed = [
84
  out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
85
  ]
86
+ logging.info("7")
87
  output_text = processor.batch_decode(
88
  generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
89
  )
90
+ logging.info("8", output_text)
91
 
92
  # Handle output text to convert it into JSON
93
+ json = str()
94
  try:
95
  almost_json = output_text[0].split('\n')[-1].split('\n')[0]
96
  json = literal_eval(almost_json)
 
104
  image = Image.fromarray(image) # Convert NumPy array to PIL Image
105
  image.save(tmp_file.name) # Save the image to the temporary file
106
  image_path = tmp_file.name # Get the path of the saved file
107
+ logging.info(image_path)
108
  # Process the image with your model
109
  one = demo(image_path, other_benifits)
110
+ logging.info("kjf")
111
  two = demo(image_path, tax_deductions)
112
  json_op = {
113
  "tax_deductions": one,