Spaces:
Paused
Paused
try gpt
Browse files
app.py
CHANGED
@@ -7,17 +7,15 @@ import torch
|
|
7 |
from ast import literal_eval
|
8 |
from PIL import Image
|
9 |
|
10 |
-
|
11 |
-
# default: Load the model on the available device(s)
|
12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
14 |
)
|
15 |
|
16 |
-
#
|
17 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
18 |
|
19 |
-
|
20 |
-
|
21 |
other_benifits = '''Extract the following information in the given format:
|
22 |
{'other_benefits_and_information': {
|
23 |
'401k eru: {'This Period':'', 'Year-to-Date':''}},
|
@@ -44,10 +42,10 @@ tax_deductions = '''Extract the following information in the given format:
|
|
44 |
}
|
45 |
'''
|
46 |
|
47 |
-
def demo(
|
|
|
|
|
48 |
|
49 |
-
print("Inside Demo")
|
50 |
-
|
51 |
messages = [
|
52 |
{
|
53 |
"role": "user",
|
@@ -61,8 +59,6 @@ def demo(image_name, prompt):
|
|
61 |
}
|
62 |
]
|
63 |
|
64 |
-
print(f"Formulated prompt template {messages}")
|
65 |
-
|
66 |
# Preparation for inference
|
67 |
text = processor.apply_chat_template(
|
68 |
messages, tokenize=False, add_generation_prompt=True
|
@@ -85,45 +81,33 @@ def demo(image_name, prompt):
|
|
85 |
output_text = processor.batch_decode(
|
86 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
87 |
)
|
|
|
|
|
88 |
try:
|
89 |
-
|
90 |
-
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
|
91 |
-
|
92 |
json = literal_eval(almost_json)
|
93 |
except:
|
94 |
-
|
95 |
-
# almost_json = output_text[0].replace('```json\n', '').replace('\n```', '')
|
96 |
-
almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
97 |
-
json = literal_eval(almost_json)
|
98 |
-
except:
|
99 |
-
json = output_text[0]
|
100 |
return json
|
101 |
|
102 |
def process_document(image):
|
103 |
-
|
104 |
-
if isinstance(image, np.ndarray):
|
105 |
-
print("Image is in Numpy array")
|
106 |
-
image = Image.fromarray(image)
|
107 |
-
print(type(image))
|
108 |
-
print("Proceeding with the demo")
|
109 |
one = demo(image, other_benifits)
|
110 |
two = demo(image, tax_deductions)
|
111 |
json_op = {
|
112 |
"tax_deductions": one,
|
113 |
"other_benifits": two
|
114 |
-
|
115 |
return json_op
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
demo = gr.Interface(
|
120 |
fn=process_document,
|
121 |
-
inputs=
|
122 |
outputs="json",
|
123 |
title="PaySlip_Demo_Model",
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
cache_examples=False)
|
128 |
|
129 |
-
demo.launch()
|
|
|
7 |
from ast import literal_eval
|
8 |
from PIL import Image
|
9 |
|
10 |
+
# Load the model on the available device(s)
|
|
|
11 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
12 |
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
13 |
)
|
14 |
|
15 |
+
# Load the processor
|
16 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
17 |
|
18 |
+
# Define your prompts
|
|
|
19 |
other_benifits = '''Extract the following information in the given format:
|
20 |
{'other_benefits_and_information': {
|
21 |
'401k eru: {'This Period':'', 'Year-to-Date':''}},
|
|
|
42 |
}
|
43 |
'''
|
44 |
|
45 |
+
def demo(image, prompt):
|
46 |
+
# Convert image to bytes or suitable format if needed
|
47 |
+
image_name = image # If you're directly using the image
|
48 |
|
|
|
|
|
49 |
messages = [
|
50 |
{
|
51 |
"role": "user",
|
|
|
59 |
}
|
60 |
]
|
61 |
|
|
|
|
|
62 |
# Preparation for inference
|
63 |
text = processor.apply_chat_template(
|
64 |
messages, tokenize=False, add_generation_prompt=True
|
|
|
81 |
output_text = processor.batch_decode(
|
82 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
83 |
)
|
84 |
+
|
85 |
+
# Handle output text to convert it into JSON
|
86 |
try:
|
87 |
+
almost_json = output_text[0].split('\n')[-1].split('\n')[0]
|
|
|
|
|
88 |
json = literal_eval(almost_json)
|
89 |
except:
|
90 |
+
json = output_text[0] # Return raw output if JSON parsing fails
|
|
|
|
|
|
|
|
|
|
|
91 |
return json
|
92 |
|
93 |
def process_document(image):
|
94 |
+
# Pass the image directly
|
|
|
|
|
|
|
|
|
|
|
95 |
one = demo(image, other_benifits)
|
96 |
two = demo(image, tax_deductions)
|
97 |
json_op = {
|
98 |
"tax_deductions": one,
|
99 |
"other_benifits": two
|
100 |
+
}
|
101 |
return json_op
|
102 |
|
103 |
+
# Create Gradio interface
|
|
|
104 |
demo = gr.Interface(
|
105 |
fn=process_document,
|
106 |
+
inputs="image", # Gradio will handle the image input
|
107 |
outputs="json",
|
108 |
title="PaySlip_Demo_Model",
|
109 |
+
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
|
110 |
+
cache_examples=False
|
111 |
+
)
|
|
|
112 |
|
113 |
+
demo.launch()
|