Spaces:
Paused
Paused
modular and title center
Browse files
app.py
CHANGED
@@ -43,38 +43,20 @@ tax_deductions = '''Extract the following information in the given format:
|
|
43 |
}
|
44 |
'''
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
def process_document(image):
|
50 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
51 |
-
image = Image.fromarray(image)
|
52 |
-
image.save(tmp_file.name)
|
53 |
-
image_path = tmp_file.name
|
54 |
-
|
55 |
-
|
56 |
-
messages = [
|
57 |
{
|
58 |
"role": "user",
|
59 |
"content": [
|
60 |
{
|
61 |
"type": "image",
|
62 |
-
"image": image_path,
|
63 |
},
|
64 |
-
{"type": "text", "text":
|
65 |
-
{
|
66 |
-
'tax_deductions': {
|
67 |
-
'federal:': {
|
68 |
-
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
69 |
-
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
|
70 |
-
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
|
71 |
-
'california:': {
|
72 |
-
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
73 |
-
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
|
74 |
-
}'''},
|
75 |
],
|
76 |
}
|
77 |
]
|
|
|
78 |
text = processor.apply_chat_template(
|
79 |
messages, tokenize=False, add_generation_prompt=True
|
80 |
)
|
@@ -87,6 +69,7 @@ def process_document(image):
|
|
87 |
return_tensors="pt",
|
88 |
)
|
89 |
inputs = inputs.to("cuda")
|
|
|
90 |
generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
91 |
generated_ids_trimmed = [
|
92 |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
@@ -94,6 +77,8 @@ def process_document(image):
|
|
94 |
output_text = processor.batch_decode(
|
95 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
96 |
)
|
|
|
|
|
97 |
try:
|
98 |
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
|
99 |
|
@@ -105,67 +90,147 @@ def process_document(image):
|
|
105 |
except:
|
106 |
json = output_text[0]
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
{
|
121 |
-
'sick:': '',
|
122 |
-
'vacation:': '',
|
123 |
-
}
|
124 |
-
'payment method': 'eg. Direct payment',
|
125 |
-
'Amount': 'eg. 12.99'
|
126 |
-
}'''},
|
127 |
-
],
|
128 |
-
}
|
129 |
-
]
|
130 |
-
text = processor.apply_chat_template(
|
131 |
-
messages, tokenize=False, add_generation_prompt=True
|
132 |
-
)
|
133 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
134 |
-
inputs = processor(
|
135 |
-
text=[text],
|
136 |
-
images=image_inputs,
|
137 |
-
videos=video_inputs,
|
138 |
-
padding=True,
|
139 |
-
return_tensors="pt",
|
140 |
-
)
|
141 |
-
inputs = inputs.to("cuda")
|
142 |
-
# Inference: Generation of the output
|
143 |
-
generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
144 |
-
generated_ids_trimmed = [
|
145 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
146 |
-
]
|
147 |
-
output_text = processor.batch_decode(
|
148 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
149 |
-
)
|
150 |
-
try:
|
151 |
-
almost_json_2 = output_text[0].split('```\n')[-1].split('\n```')[0]
|
152 |
|
153 |
-
json_2 = literal_eval(almost_json_2)
|
154 |
-
except:
|
155 |
-
try:
|
156 |
-
almost_json_2 = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
157 |
-
json_2 = literal_eval(almost_json_2)
|
158 |
-
except:
|
159 |
-
json_2 = output_text[0]
|
160 |
|
161 |
-
#
|
162 |
-
# "tax_deductions": json,
|
163 |
-
# "other_benifits": json_2
|
164 |
-
# }
|
165 |
-
# # Optionally, you can delete the temporary file after use
|
166 |
os.remove(image_path)
|
167 |
|
168 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
# Create Gradio interface
|
171 |
demo = gr.Interface(
|
@@ -175,7 +240,7 @@ demo = gr.Interface(
|
|
175 |
gr.JSON(label="Tax Deductions Information"), # First output box with heading
|
176 |
gr.JSON(label="Other Benefits and Information") # Second output box with heading
|
177 |
],
|
178 |
-
title="
|
179 |
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
|
180 |
cache_examples=False
|
181 |
)
|
|
|
43 |
}
|
44 |
'''
|
45 |
|
46 |
+
def process_function(image_path, prompt):
|
47 |
+
messages = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
{
|
49 |
"role": "user",
|
50 |
"content": [
|
51 |
{
|
52 |
"type": "image",
|
53 |
+
"image": image_path, # Use the file path here
|
54 |
},
|
55 |
+
{"type": "text", "text": prompt},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
],
|
57 |
}
|
58 |
]
|
59 |
+
# Preparation for inference
|
60 |
text = processor.apply_chat_template(
|
61 |
messages, tokenize=False, add_generation_prompt=True
|
62 |
)
|
|
|
69 |
return_tensors="pt",
|
70 |
)
|
71 |
inputs = inputs.to("cuda")
|
72 |
+
# Inference: Generation of the output
|
73 |
generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
74 |
generated_ids_trimmed = [
|
75 |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
77 |
output_text = processor.batch_decode(
|
78 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
79 |
)
|
80 |
+
|
81 |
+
# Handle output text to convert it into JSON
|
82 |
try:
|
83 |
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
|
84 |
|
|
|
90 |
except:
|
91 |
json = output_text[0]
|
92 |
|
93 |
+
return json
|
94 |
+
|
95 |
+
def process_document(image):
|
96 |
+
# Save the uploaded image to a temporary file
|
97 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
98 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
99 |
+
image.save(tmp_file.name) # Save the image to the temporary file
|
100 |
+
image_path = tmp_file.name # Get the path of the saved file
|
101 |
+
|
102 |
+
# Process the image with your model
|
103 |
+
one = process_function(image_path, other_benifits)
|
104 |
+
two = process_function(image_path, tax_deductions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Optionally, you can delete the temporary file after use
|
|
|
|
|
|
|
|
|
108 |
os.remove(image_path)
|
109 |
|
110 |
+
return one, two
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
# def process_document(image):
|
115 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
116 |
+
# image = Image.fromarray(image)
|
117 |
+
# image.save(tmp_file.name)
|
118 |
+
# image_path = tmp_file.name
|
119 |
+
|
120 |
+
|
121 |
+
# messages = [
|
122 |
+
# {
|
123 |
+
# "role": "user",
|
124 |
+
# "content": [
|
125 |
+
# {
|
126 |
+
# "type": "image",
|
127 |
+
# "image": image_path,
|
128 |
+
# },
|
129 |
+
# {"type": "text", "text": '''Extract the following information in the given format:
|
130 |
+
# {
|
131 |
+
# 'tax_deductions': {
|
132 |
+
# 'federal:': {
|
133 |
+
# 'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
134 |
+
# 'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
|
135 |
+
# 'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
|
136 |
+
# 'california:': {
|
137 |
+
# 'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
138 |
+
# 'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
|
139 |
+
# }'''},
|
140 |
+
# ],
|
141 |
+
# }
|
142 |
+
# ]
|
143 |
+
# text = processor.apply_chat_template(
|
144 |
+
# messages, tokenize=False, add_generation_prompt=True
|
145 |
+
# )
|
146 |
+
# image_inputs, video_inputs = process_vision_info(messages)
|
147 |
+
# inputs = processor(
|
148 |
+
# text=[text],
|
149 |
+
# images=image_inputs,
|
150 |
+
# videos=video_inputs,
|
151 |
+
# padding=True,
|
152 |
+
# return_tensors="pt",
|
153 |
+
# )
|
154 |
+
# inputs = inputs.to("cuda")
|
155 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
156 |
+
# generated_ids_trimmed = [
|
157 |
+
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
158 |
+
# ]
|
159 |
+
# output_text = processor.batch_decode(
|
160 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
161 |
+
# )
|
162 |
+
# try:
|
163 |
+
# almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
|
164 |
+
|
165 |
+
# json = literal_eval(almost_json)
|
166 |
+
# except:
|
167 |
+
# try:
|
168 |
+
# almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
169 |
+
# json = literal_eval(almost_json)
|
170 |
+
# except:
|
171 |
+
# json = output_text[0]
|
172 |
+
|
173 |
+
# messages = [
|
174 |
+
# {
|
175 |
+
# "role": "user",
|
176 |
+
# "content": [
|
177 |
+
# {
|
178 |
+
# "type": "image",
|
179 |
+
# "image": image_path,
|
180 |
+
# },
|
181 |
+
# {"type": "text", "text": '''Extract the following information in the given format:
|
182 |
+
# {'other_benefits_and_information': {
|
183 |
+
# '401k eru: {'This Period':'', 'Year-to-Date':''}},
|
184 |
+
# 'quota summary':
|
185 |
+
# {
|
186 |
+
# 'sick:': '',
|
187 |
+
# 'vacation:': '',
|
188 |
+
# }
|
189 |
+
# 'payment method': 'eg. Direct payment',
|
190 |
+
# 'Amount': 'eg. 12.99'
|
191 |
+
# }'''},
|
192 |
+
# ],
|
193 |
+
# }
|
194 |
+
# ]
|
195 |
+
# text = processor.apply_chat_template(
|
196 |
+
# messages, tokenize=False, add_generation_prompt=True
|
197 |
+
# )
|
198 |
+
# image_inputs, video_inputs = process_vision_info(messages)
|
199 |
+
# inputs = processor(
|
200 |
+
# text=[text],
|
201 |
+
# images=image_inputs,
|
202 |
+
# videos=video_inputs,
|
203 |
+
# padding=True,
|
204 |
+
# return_tensors="pt",
|
205 |
+
# )
|
206 |
+
# inputs = inputs.to("cuda")
|
207 |
+
# # Inference: Generation of the output
|
208 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=1500)
|
209 |
+
# generated_ids_trimmed = [
|
210 |
+
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
211 |
+
# ]
|
212 |
+
# output_text = processor.batch_decode(
|
213 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
214 |
+
# )
|
215 |
+
# try:
|
216 |
+
# almost_json_2 = output_text[0].split('```\n')[-1].split('\n```')[0]
|
217 |
+
|
218 |
+
# json_2 = literal_eval(almost_json_2)
|
219 |
+
# except:
|
220 |
+
# try:
|
221 |
+
# almost_json_2 = output_text[0].split('```json\n')[-1].split('\n```')[0]
|
222 |
+
# json_2 = literal_eval(almost_json_2)
|
223 |
+
# except:
|
224 |
+
# json_2 = output_text[0]
|
225 |
+
|
226 |
+
# # json_op = {
|
227 |
+
# # "tax_deductions": json,
|
228 |
+
# # "other_benifits": json_2
|
229 |
+
# # }
|
230 |
+
# # # Optionally, you can delete the temporary file after use
|
231 |
+
# os.remove(image_path)
|
232 |
+
|
233 |
+
# return json, json_2
|
234 |
|
235 |
# Create Gradio interface
|
236 |
demo = gr.Interface(
|
|
|
240 |
gr.JSON(label="Tax Deductions Information"), # First output box with heading
|
241 |
gr.JSON(label="Other Benefits and Information") # Second output box with heading
|
242 |
],
|
243 |
+
title="<div style='text-align: center;'>Information Extraction From PaySlip</div>",
|
244 |
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
|
245 |
cache_examples=False
|
246 |
)
|