Spaces:
Paused
Paused
one more
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
5 |
from qwen_vl_utils import process_vision_info
|
6 |
import torch
|
7 |
from ast import literal_eval
|
|
|
8 |
|
9 |
# Load the model on the available device(s)
|
10 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -37,7 +39,7 @@ tax_deductions = '''Extract the following information in the given format:
|
|
37 |
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
|
38 |
'california:': {
|
39 |
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
40 |
-
'ee disability tax:': {'Amount':'', 'Year-
|
41 |
}
|
42 |
'''
|
43 |
|
@@ -87,8 +89,11 @@ def demo(image_path, prompt):
|
|
87 |
return json
|
88 |
|
89 |
def process_document(image):
|
90 |
-
# Save the uploaded image
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
# Process the image with your model
|
94 |
one = demo(image_path, other_benifits)
|
@@ -97,6 +102,10 @@ def process_document(image):
|
|
97 |
"tax_deductions": one,
|
98 |
"other_benifits": two
|
99 |
}
|
|
|
|
|
|
|
|
|
100 |
return json_op
|
101 |
|
102 |
# Create Gradio interface
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
from qwen_vl_utils import process_vision_info
|
7 |
import torch
|
8 |
from ast import literal_eval
|
9 |
+
from PIL import Image
|
10 |
|
11 |
# Load the model on the available device(s)
|
12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
39 |
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
|
40 |
'california:': {
|
41 |
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
|
42 |
+
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
|
43 |
}
|
44 |
'''
|
45 |
|
|
|
89 |
return json
|
90 |
|
91 |
def process_document(image):
|
92 |
+
# Save the uploaded image to a temporary file
|
93 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
94 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
95 |
+
image.save(tmp_file.name) # Save the image to the temporary file
|
96 |
+
image_path = tmp_file.name # Get the path of the saved file
|
97 |
|
98 |
# Process the image with your model
|
99 |
one = demo(image_path, other_benifits)
|
|
|
102 |
"tax_deductions": one,
|
103 |
"other_benifits": two
|
104 |
}
|
105 |
+
|
106 |
+
# Optionally, you can delete the temporary file after use
|
107 |
+
os.remove(image_path)
|
108 |
+
|
109 |
return json_op
|
110 |
|
111 |
# Create Gradio interface
|