xelpmocAI commited on
Commit
db47c8b
·
verified ·
1 Parent(s): 87b2711
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -1,10 +1,12 @@
1
  import os
 
2
  import gradio as gr
3
  import numpy as np
4
  from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
5
  from qwen_vl_utils import process_vision_info
6
  import torch
7
  from ast import literal_eval
 
8
 
9
  # Load the model on the available device(s)
10
  model = Qwen2VLForConditionalGeneration.from_pretrained(
@@ -37,7 +39,7 @@ tax_deductions = '''Extract the following information in the given format:
37
  'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
38
  'california:': {
39
  'withholding tax:': {'Amount':'', 'Year-To_Date':""},
40
- 'ee disability tax:': {'Amount':'', 'Year-To_Date':""}}},
41
  }
42
  '''
43
 
@@ -87,8 +89,11 @@ def demo(image_path, prompt):
87
  return json
88
 
89
  def process_document(image):
90
- # Save the uploaded image temporarily and get its path
91
- image_path = image.name # Gradio provides an interface to access the file name
 
 
 
92
 
93
  # Process the image with your model
94
  one = demo(image_path, other_benifits)
@@ -97,6 +102,10 @@ def process_document(image):
97
  "tax_deductions": one,
98
  "other_benifits": two
99
  }
 
 
 
 
100
  return json_op
101
 
102
  # Create Gradio interface
 
1
  import os
2
+ import tempfile
3
  import gradio as gr
4
  import numpy as np
5
  from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
6
  from qwen_vl_utils import process_vision_info
7
  import torch
8
  from ast import literal_eval
9
+ from PIL import Image
10
 
11
  # Load the model on the available device(s)
12
  model = Qwen2VLForConditionalGeneration.from_pretrained(
 
39
  'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
40
  'california:': {
41
  'withholding tax:': {'Amount':'', 'Year-To_Date':""},
42
+ 'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
43
  }
44
  '''
45
 
 
89
  return json
90
 
91
  def process_document(image):
92
+ # Save the uploaded image to a temporary file
93
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
94
+ image = Image.fromarray(image) # Convert NumPy array to PIL Image
95
+ image.save(tmp_file.name) # Save the image to the temporary file
96
+ image_path = tmp_file.name # Get the path of the saved file
97
 
98
  # Process the image with your model
99
  one = demo(image_path, other_benifits)
 
102
  "tax_deductions": one,
103
  "other_benifits": two
104
  }
105
+
106
+ # Optionally, you can delete the temporary file after use
107
+ os.remove(image_path)
108
+
109
  return json_op
110
 
111
  # Create Gradio interface