import re import gradio as gr from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import torch from ast import literal_eval # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) other_benifits = '''Extract the following information in the given format: {'other_benefits_and_information': { '401k eru: {'This Period':'', 'Year-to-Date':''}}, 'quota summary': { 'sick:': '', 'vacation:': '', } 'payment method': '', 'Amount': '' } ''' tax_deductions = '''Extract the following information in the given format: { 'tax_deductions': { 'federal:': { 'withholding tax:': {'Amount':'', 'Year-To_Date':""}, 'ee social security tax:': {'Amount':'', 'Year-To_Date':""}, 'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}}, 'california:': { 'withholding tax:': {'Amount':'', 'Year-To_Date':""}, 'ee disability tax:': {'Amount':'', 'Year-To_Date':""}}}, } ''' def demo(image_name, prompt): messages = [ { "role": "user", "content": [ { "type": "image", "image": image_name, }, {"type": "text", "text": prompt}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=1500) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) try: # almost_json = output_text[0].replace('```\n', '').replace('\n```', '') almost_json = output_text[0].split('```\n')[-1].split('\n```')[0] json = literal_eval(almost_json) except: try: # almost_json = output_text[0].replace('```json\n', '').replace('\n```', '') almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0] json = literal_eval(almost_json) except: json = output_text[0] return json def process_document(image): one = demo(image, other_benifits) two = demo(image, tax_deductions) json_op = { "tax_deductions": one, "other_benifits": two } return json_op # article = "

Made by Xelpmoc

" demo = gr.Interface( fn=process_document, inputs="image", outputs="json", title="PaySlip_Demo_Model", # article=article, enable_queue=True, examples=[["Slip_1.jpg"], ["Slip_2.jpg"]], cache_examples=False) demo.launch()