RishuD7 commited on
Commit
122d428
1 Parent(s): 140fcb7

first commit

Browse files
.dockerignore ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__
2
+ *.pyc
3
+ *.pyo
4
+ *.pyd
5
+ .Python
6
+ env
7
+ pip-log.txt
8
+ pip-delete-this-directory.txt
9
+ .tox
10
+ .coverage
11
+ .coverage.*
12
+ .cache
13
+ nosetests.xml
14
+ coverage.xml
15
+ *.cover
16
+ *.log
17
+ .git
18
+ .mypy_cache
19
+ .pytest_cache
20
+ .hypothesis
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Name Entity Recognition
3
- emoji: 🏢
4
- colorFrom: purple
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 3.34.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
1
  ---
2
+ title: Entity Extraction
3
+ emoji: 📚
4
+ colorFrom: red
5
+ colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 3.28.3
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ if __name__ == '__main__':
2
+ inputs = ['gbjjhbdjhbdgjhdbfjhsdkjrkjf', 'fdjhbjhsbd']
3
+ from transformers import AutoTokenizer
4
+ from model import CustomModel
5
+ import torch
6
+ from configuration import CFG
7
+ from dataset import SingleInputDataset
8
+ from torch.utils.data import DataLoader
9
+ from utils import inference_fn, get_char_probs, get_results, get_text
10
+ import numpy as np
11
+ import gradio as gr
12
+ import os
13
+
14
+ device = torch.device('cpu')
15
+ config_path = os.path.join('models_file', 'config.pth')
16
+ model_path = os.path.join('models_file', 'microsoft-deberta-base_0.9449373420387531_8_best.pth')
17
+ tokenizer = AutoTokenizer.from_pretrained('models_file/tokenizer')
18
+ model = CustomModel(CFG, config_path=config_path, pretrained=False)
19
+ state = torch.load(model_path,
20
+ map_location=torch.device('cpu'))
21
+ model.load_state_dict(state['model'])
22
+
23
+ def get_answer(context, feature):
24
+
25
+ ## Input to the model using patient-history and feature-text
26
+ inputs_single = tokenizer(context, feature,
27
+ add_special_tokens=True,
28
+ max_length=CFG.max_len,
29
+ padding="max_length",
30
+ return_offsets_mapping=False)
31
+
32
+ for k, v in inputs_single.items():
33
+ inputs_single[k] = torch.tensor(v, dtype=torch.long)
34
+
35
+ # Create a new dataset containing only the input sample
36
+ single_input_dataset = SingleInputDataset(inputs_single)
37
+ # Create a DataLoader for the new dataset
38
+ single_input_loader = DataLoader(
39
+ single_input_dataset,
40
+ batch_size=1,
41
+ shuffle=False,
42
+ num_workers=2
43
+ )
44
+
45
+ # Perform inference on the single input
46
+ output = inference_fn(single_input_loader, model, device)
47
+
48
+ prediction = output.reshape((1, CFG.max_len))
49
+ char_probs = get_char_probs([context], prediction, tokenizer)
50
+ predictions = np.mean([char_probs], axis=0)
51
+ results = get_results(predictions, th=0.5)
52
+
53
+ print(results)
54
+ return get_text(context, results[0])
55
+
56
+ inputs = [gr.inputs.Textbox(label="Context Para", lines=10), gr.inputs.Textbox(label="Question", lines=1)]
57
+ output = gr.outputs.Textbox(label="Answer")
58
+ article = "<p style='text-align: center'><a href='https://www.xelpmoc.in/' target='_blank'>Made by Xelpmoc</a></p>"
59
+
60
+ app = gr.Interface(
61
+ fn=get_answer,
62
+ inputs=inputs,
63
+ outputs=output,
64
+ allow_flagging='never',
65
+ title="Entity Extraction from Text",
66
+ article=article,
67
+ enable_queue=True,
68
+ cache_examples=False)
69
+
70
+ app.launch()
configuration.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ====================================================
2
+ # CFG
3
+ # ====================================================
4
+ class CFG:
5
+ print_freq=100
6
+ num_workers=0
7
+ model="microsoft/deberta-base"
8
+ token="microsoft/deberta-base"
9
+ fc_dropout=0.2
10
+ max_len=739
11
+ weight_decay=0.01
12
+ project_folder = '/content/drive/MyDrive/Projects/Exigent/POC-V1/'
13
+ matching_data = 'matching_data.csv'
dataset.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+
3
+ # Create a custom dataset class that takes a single input sample
4
+ class SingleInputDataset(Dataset):
5
+ def __init__(self, input_single):
6
+ self.sample = input_single
7
+
8
+ def __len__(self):
9
+ return 1
10
+
11
+ def __getitem__(self, index):
12
+ return self.sample
model.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import AutoConfig, AutoModel
4
+
5
+ # ====================================================
6
+ # Model
7
+ # ====================================================
8
+ class CustomModel(nn.Module):
9
+ def __init__(self, cfg, config_path=None, pretrained=False):
10
+ super().__init__()
11
+ self.cfg = cfg
12
+
13
+ if config_path is None:
14
+ self.config = AutoConfig.from_pretrained(cfg.model, output_hidden_states=True)
15
+ else:
16
+ self.config = torch.load(config_path)
17
+ if pretrained:
18
+ self.model = AutoModel.from_pretrained(cfg.model, config=self.config)
19
+ else:
20
+ self.model = AutoModel.from_config(self.config)
21
+ self.fc_dropout = nn.Dropout(cfg.fc_dropout)
22
+ self.fc = nn.Linear(self.config.hidden_size, 1)
23
+ self._init_weights(self.fc)
24
+
25
+ def _init_weights(self, module):
26
+ if isinstance(module, nn.Linear):
27
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
28
+ if module.bias is not None:
29
+ module.bias.data.zero_()
30
+ elif isinstance(module, nn.Embedding):
31
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
32
+ if module.padding_idx is not None:
33
+ module.weight.data[module.padding_idx].zero_()
34
+ elif isinstance(module, nn.LayerNorm):
35
+ module.bias.data.zero_()
36
+ module.weight.data.fill_(1.0)
37
+
38
+ def feature(self, inputs):
39
+ outputs = self.model(**inputs)
40
+ last_hidden_states = outputs[0]
41
+ return last_hidden_states
42
+
43
+ def forward(self, inputs):
44
+ feature = self.feature(inputs)
45
+ output = self.fc(self.fc_dropout(feature))
46
+ return output
models_file/config.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44242dd46e256e33385a5be4979c8df941af4ae4d8ad5f2feb5315d114da5f98
3
+ size 2541
models_file/microsoft-deberta-base_0.9449373420387531_8_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994ef334eed041e7b0d62f2ad3f97444adcac4696a8027a5b14bf803bb27265f
3
+ size 555618276
models_file/tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
models_file/tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
models_file/tokenizer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models_file/tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "[CLS]",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "cls_token": {
14
+ "__type": "AddedToken",
15
+ "content": "[CLS]",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "do_lower_case": false,
22
+ "eos_token": {
23
+ "__type": "AddedToken",
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "errors": "replace",
31
+ "mask_token": {
32
+ "__type": "AddedToken",
33
+ "content": "[MASK]",
34
+ "lstrip": true,
35
+ "normalized": true,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "model_max_length": 512,
40
+ "pad_token": {
41
+ "__type": "AddedToken",
42
+ "content": "[PAD]",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": false
47
+ },
48
+ "sep_token": {
49
+ "__type": "AddedToken",
50
+ "content": "[SEP]",
51
+ "lstrip": false,
52
+ "normalized": true,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ },
56
+ "tokenizer_class": "DebertaTokenizer",
57
+ "unk_token": {
58
+ "__type": "AddedToken",
59
+ "content": "[UNK]",
60
+ "lstrip": false,
61
+ "normalized": true,
62
+ "rstrip": false,
63
+ "single_word": false
64
+ },
65
+ "vocab_type": "gpt2"
66
+ }
models_file/tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ numpy
4
+ scikit-learn
5
+ gradio
utils.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import torch
3
+ import numpy as np
4
+ from tqdm.auto import tqdm
5
+
6
+ def get_char_probs(texts, predictions, tokenizer):
7
+ """
8
+ Maps prediction from encoded offset mapping to the text
9
+
10
+ Prediction = 466 sequence length * batch
11
+ text = 768 * batch
12
+ Using offset mapping [(0, 4), ] -- 466
13
+
14
+ creates results that is size of texts
15
+
16
+ for each text result[i]
17
+ result[0, 4] = pred[0] like wise for all
18
+
19
+ """
20
+ results = [np.zeros(len(t)) for t in texts]
21
+ for i, (text, prediction) in enumerate(zip(texts, predictions)):
22
+ encoded = tokenizer(text,
23
+ add_special_tokens=True,
24
+ return_offsets_mapping=True)
25
+ for idx, (offset_mapping, pred) in enumerate(zip(encoded['offset_mapping'], prediction)):
26
+ start = offset_mapping[0]
27
+ end = offset_mapping[1]
28
+ results[i][start:end] = pred
29
+ return results
30
+
31
+
32
+ def get_results(char_probs, th=0.5):
33
+ """
34
+ Get the list of probabilites with size of text
35
+ And then get the index of the characters which are more than th
36
+ example:
37
+ char_prob = [0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.2, 0.2, 0.2, 0.7, 0.7, 0.7] ## length == 766
38
+ where > 0.5 index ## [ 2, 3, 4, 5, 9, 10, 11]
39
+
40
+ Groupby same one -- [[2, 3, 4, 5], [9, 10, 11]]
41
+ And get the max and min and output the results
42
+
43
+ """
44
+ results = []
45
+ for char_prob in char_probs:
46
+ result = np.where(char_prob >= th)[0] + 1
47
+ result = [list(g) for _, g in itertools.groupby(result, key=lambda n, c=itertools.count(): n - next(c))]
48
+ result = [f"{min(r)} {max(r)}" for r in result]
49
+ result = ";".join(result)
50
+ results.append(result)
51
+ return results
52
+
53
+
54
+ def get_predictions(results):
55
+ """
56
+ Will get the location, as a string, just like location in the df
57
+ results = ['2 5', '9 11']
58
+
59
+ loop through, split it and save it as start and end and store it in array
60
+ """
61
+ predictions = []
62
+ for result in results:
63
+ prediction = []
64
+ if result != "":
65
+ for loc in [s.split() for s in result.split(';')]:
66
+ start, end = int(loc[0]), int(loc[1])
67
+ prediction.append([start, end])
68
+ predictions.append(prediction)
69
+ return predictions
70
+
71
+ def inference_fn(test_loader, model, device):
72
+ preds = []
73
+ model.eval()
74
+ model.to(device)
75
+ tk0 = tqdm(test_loader, total=len(test_loader))
76
+ for inputs in tk0:
77
+ for k, v in inputs.items():
78
+ inputs[k] = v.to(device)
79
+ with torch.no_grad():
80
+ y_preds = model(inputs)
81
+ preds.append(y_preds.sigmoid().numpy())
82
+ predictions = np.concatenate(preds)
83
+ return predictions
84
+
85
+ def get_text(context, indexes):
86
+ if (indexes):
87
+ if ';' in indexes:
88
+ list_indexes = indexes.split(';')
89
+
90
+ answer = ''
91
+ for idx in list_indexes:
92
+ start_index = int(idx.split(' ')[0])
93
+ end_index = int(idx.split(' ')[1])
94
+ answer += ' '
95
+ answer += context[start_index:end_index]
96
+ return answer
97
+ else:
98
+ start_index = int(indexes.split(' ')[0])
99
+ end_index = int(indexes.split(' ')[1])
100
+
101
+ return context[start_index:end_index]
102
+ else:
103
+ return 'Not found in this Context'
104
+