xeroISB commited on
Commit
0f6aa00
·
verified ·
1 Parent(s): f2455c3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+ from keras.models import load_model
5
+ from huggingface_hub import hf_hub_download
6
+ from keras.preprocessing.text import Tokenizer
7
+ from keras.preprocessing.sequence import pad_sequences
8
+ from sklearn.preprocessing import LabelEncoder, StandardScaler
9
+ from nltk.sentiment.vader import SentimentIntensityAnalyzer
10
+ import nltk
11
+
12
+ # Download VADER lexicon for sentiment analysis
13
+ nltk.download('vader_lexicon')
14
+
15
+ # Load the model from Hugging Face
16
+ model_path = hf_hub_download(repo_id="your-username/your-model-repo", filename="my_model.h5")
17
+ model = load_model(model_path)
18
+
19
+ # Initialize Tokenizer and LabelEncoders
20
+ tokenizer = Tokenizer(num_words=10000, oov_token='<OOV>')
21
+ label_encoders = {
22
+ 'impact': LabelEncoder(),
23
+ 'priority': LabelEncoder(),
24
+ 'category': LabelEncoder(),
25
+ 'urgency': LabelEncoder()
26
+ }
27
+
28
+ # Function to preprocess input data
29
+ def preprocess_input(short_description, impact, priority, category, urgency):
30
+ # Encode categorical features
31
+ input_data = pd.DataFrame({
32
+ 'short_description': [short_description],
33
+ 'impact': [impact],
34
+ 'priority': [priority],
35
+ 'category': [category],
36
+ 'urgency': [urgency]
37
+ })
38
+
39
+ for column in ['impact', 'priority', 'category', 'urgency']:
40
+ input_data[column] = label_encoders[column].fit_transform(input_data[column])
41
+
42
+ # Tokenize text data
43
+ sequences = tokenizer.texts_to_sequences(input_data['short_description'])
44
+ padded_sequences = pad_sequences(sequences, maxlen=50, padding='post', truncating='post')
45
+
46
+ # Feature engineering: Add sentiment score
47
+ sid = SentimentIntensityAnalyzer()
48
+ input_data['sentiment_score'] = input_data['short_description'].apply(lambda x: sid.polarity_scores(x)['compound'])
49
+
50
+ # Normalize numerical features
51
+ numerical_features = input_data[['impact', 'priority', 'category', 'urgency', 'sentiment_score']]
52
+ scaler = StandardScaler()
53
+ scaled_numerical_features = scaler.fit_transform(numerical_features)
54
+
55
+ # Prepare the final input features
56
+ X_input = np.concatenate([padded_sequences, scaled_numerical_features], axis=1)
57
+ return X_input, input_data['sentiment_score'].iloc[0]
58
+
59
+ # Function to make predictions
60
+ def predict(short_description, impact, priority, category, urgency):
61
+ X_input, sentiment_score = preprocess_input(short_description, impact, priority, category, urgency)
62
+ predictions = model.predict(X_input)
63
+ predicted_label = np.argmax(predictions, axis=1)[0]
64
+ return predicted_label, sentiment_score
65
+
66
+ # Define Gradio interface
67
+ inputs = [
68
+ gr.inputs.Textbox(lines=2, placeholder="Enter short description...", label="Short Description"),
69
+ gr.inputs.Textbox(lines=1, placeholder="Enter impact...", label="Impact (e.g., '2 - Medium')"),
70
+ gr.inputs.Textbox(lines=1, placeholder="Enter priority...", label="Priority (e.g., '2 - Medium')"),
71
+ gr.inputs.Textbox(lines=1, placeholder="Enter category...", label="Category (e.g., 'Network')"),
72
+ gr.inputs.Textbox(lines=1, placeholder="Enter urgency...", label="Urgency (e.g., '1 - High')")
73
+ ]
74
+
75
+ outputs = [
76
+ gr.outputs.Textbox(label="Predicted Duration Bin"),
77
+ gr.outputs.Textbox(label="Sentiment Score")
78
+ ]
79
+
80
+ interface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="Issue Resolution Predictor", description="Predict the duration bin and sentiment score based on issue description and related features.")
81
+
82
+ # Launch the interface
83
+ interface.launch()