Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,7 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
from keras.models import load_model
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
from
|
7 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
-
from tensorflow.keras.models import Sequential
|
9 |
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
10 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
11 |
import nltk
|
@@ -17,8 +15,10 @@ nltk.download('vader_lexicon')
|
|
17 |
model_path = hf_hub_download(repo_id="xeroISB/ServiceNowMTTR", filename="my_model.h5")
|
18 |
model = load_model(model_path)
|
19 |
|
20 |
-
# Initialize
|
21 |
-
tokenizer =
|
|
|
|
|
22 |
label_encoders = {
|
23 |
'impact': LabelEncoder(),
|
24 |
'priority': LabelEncoder(),
|
@@ -39,14 +39,12 @@ def preprocess_input(short_description, impact, priority, category, urgency):
|
|
39 |
|
40 |
for column in ['impact', 'priority', 'category', 'urgency']:
|
41 |
input_data[column] = label_encoders[column].fit_transform(input_data[column])
|
|
|
42 |
short_description = input_data['short_description'].iloc[0].lower()
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
if not sequences:
|
48 |
-
return None, None # Handle empty sequences
|
49 |
-
padded_sequences = pad_sequences(sequences, maxlen=50, padding='post', truncating='post')
|
50 |
|
51 |
# Feature engineering: Add sentiment score
|
52 |
sid = SentimentIntensityAnalyzer()
|
@@ -55,7 +53,6 @@ def preprocess_input(short_description, impact, priority, category, urgency):
|
|
55 |
# Normalize numerical features
|
56 |
numerical_features = input_data[['impact', 'priority', 'category', 'urgency', 'sentiment_score']]
|
57 |
scaler = StandardScaler()
|
58 |
-
|
59 |
scaled_numerical_features = scaler.fit_transform(numerical_features)
|
60 |
|
61 |
# Prepare the final input features
|
|
|
3 |
import pandas as pd
|
4 |
from keras.models import load_model
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
from transformers import BertTokenizer
|
|
|
|
|
7 |
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
8 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
9 |
import nltk
|
|
|
15 |
model_path = hf_hub_download(repo_id="xeroISB/ServiceNowMTTR", filename="my_model.h5")
|
16 |
model = load_model(model_path)
|
17 |
|
18 |
+
# Initialize BERT tokenizer
|
19 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
20 |
+
|
21 |
+
# Initialize LabelEncoders
|
22 |
label_encoders = {
|
23 |
'impact': LabelEncoder(),
|
24 |
'priority': LabelEncoder(),
|
|
|
39 |
|
40 |
for column in ['impact', 'priority', 'category', 'urgency']:
|
41 |
input_data[column] = label_encoders[column].fit_transform(input_data[column])
|
42 |
+
|
43 |
short_description = input_data['short_description'].iloc[0].lower()
|
44 |
+
|
45 |
+
# Tokenize text data using BERT tokenizer
|
46 |
+
inputs = tokenizer(short_description, return_tensors='tf', padding='max_length', truncation=True, max_length=50)
|
47 |
+
padded_sequences = np.array(inputs['input_ids'])
|
|
|
|
|
|
|
48 |
|
49 |
# Feature engineering: Add sentiment score
|
50 |
sid = SentimentIntensityAnalyzer()
|
|
|
53 |
# Normalize numerical features
|
54 |
numerical_features = input_data[['impact', 'priority', 'category', 'urgency', 'sentiment_score']]
|
55 |
scaler = StandardScaler()
|
|
|
56 |
scaled_numerical_features = scaler.fit_transform(numerical_features)
|
57 |
|
58 |
# Prepare the final input features
|