Spaces:
Runtime error
Runtime error
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Load environment variables | |
api_key= os.environ.get('OPENAI_API_KEY') | |
# Ensure the API key is available | |
if not api_key: | |
raise ValueError("OPENAI_API_KEY environment variable is not set.") | |
openai = OpenAI( | |
api_key=api_key, | |
base_url="https://cloud.olakrutrim.com/v1", | |
) | |
# Function to create the system prompt based on the selected detector | |
def create_system_prompt(detector_type): | |
if detector_type == "Love Detector": | |
system_prompt = """You are a expert linguist that specializes in detecting love or affection in conversations. | |
Analyze the user's message and determine if there are love feelings involved. | |
Provide a response in 2-3 lines and rate the feelings from 1-10, where 10 means absolutely in love. | |
Always Provide the Response in following format only | |
Format - | |
Love Rating: {Rating} | |
Analysis : 2-3 lines""" | |
elif detector_type == "Sarcasm Detector": | |
system_prompt = """You are a expert linguist that specializes in detecting sarcasm in conversations. | |
Analyze the user's message and determine if there is any sarcasm. If yes then try to explain the true essence of the sentence. | |
Provide a response in 2-3 lines. | |
Always Provide the Response in following format only | |
Format - | |
Saracasm Detected: {Yes/No} | |
Analysis : 2-3 lines""" | |
elif detector_type == "Hidden Anger Detector": | |
system_prompt = """You are a expert linguist that specializes in detecting passive aggresiness in conversations. | |
Analyze the user's message and determine if there is any anger. If yes then try to explain the true essence of the sentence. | |
Provide a response in 2-3 lines. | |
Always Provide the Response in following format only | |
Format - | |
Anger Detected: {Yes/No} | |
Analysis : 2-3 lines""" | |
return system_prompt | |
# Function to get response from OpenAI API | |
def analyze_chat(detector_type, chat_input): | |
system_prompt = create_system_prompt(detector_type) | |
response = openai.chat.completions.create( | |
model="Meta-Llama-3-8B-Instruct", # Change to the OpenAI model you prefer | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": chat_input} | |
], | |
frequency_penalty= 0, # Optional, Defaults to 0. Range: -2 to 2 | |
logit_bias= {2435: -100, 640: -100}, | |
logprobs= True, # Optional, Defaults to false | |
top_logprobs= 2, # Optional. Range: 0 to 50 | |
max_tokens= 500, # Optional | |
n= 1, # Optional, Defaults to 1 | |
presence_penalty= 0, # Optional, Defaults to 0. Range: -2 to 2 | |
response_format= { "type": "text" }, # Optional, Defaults to text | |
stream= False, # Optional, Defaults to false | |
temperature= 0, # Optional, Defaults to 1. Range: 0 to 2 | |
top_p= 1 # Optional, Defaults to 1. We generally recommend altering this or temperature but not both. | |
) | |
return response.choices[0].message.content.strip() | |
# Gradio interface | |
def gradio_interface(chat_input, detector_type): | |
return analyze_chat(detector_type, chat_input) | |
# Custom CSS for input restriction | |
custom_css = """ | |
#input-textbox textarea { | |
maxlength: 210; | |
overflow: hidden; | |
resize: none; | |
} | |
""" | |
# Creating the Gradio UI | |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
gr.Markdown("## AI Emotion Detective - Jiraya Sensei") | |
chat_input = gr.TextArea(label="Enter your chat in 2-3 lines...", lines=3,elem_id="input-textbox", | |
info="Please ensure that any Personal Identifiable Information (PII) is removed before submitting the chat.", placeholder ="Person A: You always know how to make me smile, even on the worst days.") | |
detector_type = gr.Dropdown(choices=["Love Detector", "Sarcasm Detector", "Hidden Anger Detector"], label="Select Detector Type") | |
with gr.Column(scale=2, min_width=300): | |
gr.Markdown("## Jiraya Sensei's Response") | |
output = gr.TextArea(label="Analysis",info="Disclaimer: The information provided below is generated by AI based on text analytics with limited context. It should not be considered as absolute truth or final judgment.", interactive = False, max_lines=5) | |
with gr.Row(): | |
btn = gr.Button("Analyze") | |
btn.click(fn=gradio_interface, inputs=[chat_input, detector_type], outputs=output) | |
# Launch the app | |
demo.launch() | |