Spaces:
Running
Running
File size: 8,427 Bytes
c8790f8 e1c7e45 c8790f8 e1c7e45 f3ee33d c8790f8 e1c7e45 c8790f8 e1c7e45 c8790f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# pylint: disable=no-member
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
s3_aggregation_df = pd.read_parquet(
"hf://datasets/xet-team/cas-pops-analysis-data/aggregated_s3_logs.parquet"
)
aws_regions = pd.read_parquet(
"hf://datasets/xet-team/cas-pops-analysis-data/regions.parquet"
)
sum_request_count = s3_aggregation_df["request_count"].sum()
sum_object_size = s3_aggregation_df["object_size"].sum()
n_unique_countries = s3_aggregation_df["country_code"].nunique()
unique_regions = list(s3_aggregation_df["region"].unique())
unique_countries = list(s3_aggregation_df["country_name"].unique())
all_regions_countries = unique_regions + unique_countries
agg_by_region = (
s3_aggregation_df.groupby(["region"])[["object_size", "request_count"]]
.sum()
.reset_index()
)
agg_by_region["object_size_pct"] = (
agg_by_region["object_size"] / agg_by_region["object_size"].sum()
)
agg_by_region["request_count_pct"] = (
agg_by_region["request_count"] / agg_by_region["request_count"].sum()
)
agg_by_region["object_size_pct_fmt"] = agg_by_region["object_size_pct"].apply(
lambda x: f"{100*x:.2f}"
)
agg_by_region["request_pct_fmt"] = agg_by_region["request_count_pct"].apply(
lambda x: f"{100*x:.2f}"
)
def remap_radio_value(value):
return "object_size" if value == "Upload size" else "request_count"
def pareto_chart(sort_by, global_filter="All"):
sort_by = remap_radio_value(sort_by)
title = sort_by.replace("_", " ").title()
_df = (
s3_aggregation_df.groupby(["country_code", "country_name", "region"])[sort_by]
.sum()
.reset_index()
)
if global_filter != "All":
if global_filter in unique_regions:
_df = _df[_df["region"] == global_filter]
_df = _df.sort_values(by=sort_by, ascending=False)
_df["cumulative_percentage"] = _df[sort_by].cumsum() / _df[sort_by].sum() * 100
_df = _df.head(20)
if global_filter != "All":
_df = _df.head(10)
fig = go.Figure()
fig.add_trace(
go.Bar(
x=_df["country_code"],
y=_df[sort_by],
name=title,
hovertext=_df["country_name"],
)
)
fig.add_trace(
go.Scatter(
x=_df["country_code"],
y=_df["cumulative_percentage"],
yaxis="y2",
name="Cumulative Percentage",
mode="lines+markers",
)
)
region = global_filter + " region" if global_filter != "All" else "All Regions"
# Update layout
if title == "Object Size":
title = "Uploaded Data (TB)"
else:
title = "Requests"
fig.update_layout(
title=f"Top {_df.shape[0]} Countries by Total {title} in {region}",
xaxis_title="Country ISO Code",
yaxis_title=title,
yaxis2=dict(title="Cumulative Percentage", overlaying="y", side="right"),
xaxis=dict(range=[-0.5, len(_df["country_code"]) - 0.5]),
legend=dict(orientation="h"),
)
fig.add_hline(
y=80,
line_dash="dot",
annotation_text="",
annotation_position="top right",
yref="y2",
)
return fig
def manually_animated_choropleth_filter(hour, df_column, global_filter):
df_column = remap_radio_value(df_column)
hour = hour - 1
if global_filter != "All":
min_range = s3_aggregation_df[s3_aggregation_df["region"] == global_filter][
df_column
].min()
max_range = s3_aggregation_df[s3_aggregation_df["region"] == global_filter][
df_column
].max()
else:
min_range = s3_aggregation_df[df_column].min()
max_range = s3_aggregation_df[df_column].max()
_df = s3_aggregation_df[s3_aggregation_df["hour"] == hour]
if global_filter != "All":
if global_filter in unique_regions:
_df = _df[_df["region"] == global_filter]
title = df_column.replace("_", " ").title()
fig = px.choropleth(
data_frame=_df,
locations="country_code",
color=df_column,
color_continuous_scale=px.colors.sequential.Plasma,
projection="natural earth",
height=800,
hover_name="country_name",
hover_data=df_column,
range_color=[min_range, max_range],
)
if title == "Object Size":
title = "Global Distribution of Uploaded Data (TB)"
else:
title = "Global Distribution of Requests"
fig.update_layout(
title_text=title,
geo=dict(showframe=False, showcoastlines=False),
margin=dict(l=0, r=0, t=0, b=0),
)
return fig
with gr.Blocks(theme="citrus", fill_width=False) as demo:
gr.Markdown(
"""
# A Global Analysis of Hub Uploads
"""
)
gr.Markdown(
"The [Xet team's](https://huggingface.co/xet-team) backend uses a [content-addressable store (CAS)](https://en.wikipedia.org/wiki/Content-addressable_storage) for efficient deduplication and optimized data storage, making it ideal for Hugging Face Hub's scale. As we re-architect uploads and downloads on the Hub, we are inserting a CAS as the first stop for content distribution. To decide where to deploy our CAS [points of presence](https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/points-of-presence.html), we analyzed a 24 hour window of global uploads to the Hub from October 11th, 2024."
)
gr.HTML(
f"<div id='global' style='color:var(--body-text-color)'>We found <span style='background-color:#f59e0b;color:black;padding:2px'>{sum_request_count:,}</span> upload requests pushing over <span style='background-color:#f59e0b;color:black;padding:2px'>{sum_object_size / 1e+12:.2f} TB</span> from <span style='background-color:#f59e0b;color:black;padding:2px'>{n_unique_countries}</span> countries. Explore the data below by using the slider to view uploads by hour, the buttons to visualize by object size or number of requests, and the dropdown to see how uploads will be routed by AWS region in our new design.</div>"
)
with gr.Row():
with gr.Group():
with gr.Column(scale=1):
hour = gr.Slider(minimum=1, step=1, maximum=24, label="Hour")
with gr.Row():
aggregate_by = gr.Radio(
choices=["Upload size", "Requests"],
value="Upload size",
label="View by total upload size in bytes or cumulative requests from a country",
)
countries = gr.Dropdown(
choices=["All"] + unique_regions,
label="Filter by CAS AWS region",
multiselect=False,
value="All",
)
chloropleth_map = gr.Plot()
# Load the map and listen to changes on the year slider updating the map accordingly
demo.load(
manually_animated_choropleth_filter,
inputs=[hour, aggregate_by, countries],
outputs=chloropleth_map,
)
hour.change(
manually_animated_choropleth_filter,
inputs=[hour, aggregate_by, countries],
outputs=chloropleth_map,
show_progress=False,
)
aggregate_by.change(
manually_animated_choropleth_filter,
inputs=[hour, aggregate_by, countries],
outputs=chloropleth_map,
show_progress=False,
)
countries.change(
manually_animated_choropleth_filter,
inputs=[hour, aggregate_by, countries],
outputs=chloropleth_map,
show_progress=False,
)
gr.Markdown(
"The Pareto chart below shows the top countries by upload size or request count, with a cumulative line indicating the percentage of total upload volume or requests represented by these countries. This chart is filtered by AWS region selected above."
)
bar_chart = gr.Plot()
demo.load(
pareto_chart,
inputs=[aggregate_by, countries],
outputs=bar_chart,
)
aggregate_by.change(
pareto_chart,
inputs=[aggregate_by, countries],
outputs=bar_chart,
show_progress=False,
)
countries.change(
pareto_chart,
inputs=[aggregate_by, countries],
outputs=bar_chart,
show_progress=False,
)
demo.launch()
# TODO - add bandwidth slowdown
|