Spaces:
Running
Running
File size: 14,639 Bytes
1f81beb a57b3d3 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb a57b3d3 1f81beb 9c5987b 1f81beb a57b3d3 1f81beb f6db30c 9c5987b f6db30c 9c5987b f6db30c 9c5987b f6db30c 1f81beb f6db30c 1f81beb 9c5987b 1f81beb 9c5987b 1f81beb 3522965 1f81beb 3522965 1f81beb f6db30c 1f81beb f6db30c 9c5987b 1f81beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import gradio as gr
import pandas as pd
from plotly import graph_objects as go
import plotly.io as pio
import plotly.express as px
# Set the default theme to "plotly_dark"
pio.templates.default = "plotly_dark"
def process_dataset():
"""
Process the dataset and perform the following operations:
1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files.
2. Convert the total size to petabytes and format it to two decimal places.
3. Capitalize the 'type' column in the file_counts_and_sizes dataframe.
4. Rename the columns in the file_counts_and_sizes dataframe.
5. Sort the file_counts_and_sizes dataframe by total size in descending order.
6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe.
7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes.
"""
file_counts_and_sizes = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet"
)
repo_by_size_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet"
)
unique_files_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet"
)
file_extensions = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet"
)
# read the file_extensions_by_month.parquet file
file_extensions_by_month = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet"
)
# drop any nas
file_extensions_by_month = file_extensions_by_month.dropna()
# Convert the total size to petabytes and format to two decimal places
file_counts_and_sizes = format_dataframe_size_column(
file_counts_and_sizes, "total_size"
)
file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize()
# update the column name to 'total size (PB)'
file_counts_and_sizes = file_counts_and_sizes.rename(
columns={
"type": "Repository Type",
"num_files": "Number of Files",
"total_size": "Total Size (PBs)",
}
)
# sort the dataframe by total size in descending order
file_counts_and_sizes = file_counts_and_sizes.sort_values(
by="Total Size (PBs)", ascending=False
)
# drop nas from the extension column
file_extensions = file_extensions.dropna(subset=["extension"])
return (
repo_by_size_df,
unique_files_df,
file_counts_and_sizes,
file_extensions,
file_extensions_by_month,
)
def format_dataframe_size_column(_df, column_name):
"""
Format the size to petabytes and return the formatted size.
"""
_df[column_name] = _df[column_name] / 1e15
_df[column_name] = _df[column_name].map("{:.2f}".format)
return _df
def cumulative_growth_plot_analysis(df, df_compressed):
"""
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.
Args:
df (DataFrame): The input dataframe containing the data.
df_compressed (DataFrame): The input dataframe containing the compressed data.
Returns:
tuple: A tuple containing two elements:
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
- last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes.
Raises:
None
"""
# Convert year and month into a datetime column
df["date"] = pd.to_datetime(df[["year", "month"]].assign(day=1))
df_compressed["date"] = pd.to_datetime(
df_compressed[["year", "month"]].assign(day=1)
)
# Sort by date to ensure correct cumulative sum
df = df.sort_values(by="date")
df_compressed = df_compressed.sort_values(by="date")
# Pivot the dataframe to get the totalsize for each type
pivot_df = df.pivot_table(
index="date", columns="type", values="totalsize", aggfunc="sum"
).fillna(0)
pivot_df_compressed = df_compressed.pivot_table(
index="date", columns="type", values="totalsize", aggfunc="sum"
).fillna(0)
# Calculate cumulative sum for each type
cumulative_df = pivot_df.cumsum()
cumulative_df_compressed = pivot_df_compressed.cumsum()
last_10_months = cumulative_df.tail(10).copy()
last_10_months["total"] = last_10_months.sum(axis=1)
last_10_months["total_change"] = last_10_months["total"].diff()
last_10_months = format_dataframe_size_column(last_10_months, "total_change")
last_10_months["date"] = cumulative_df.tail(10).index
# drop the dataset, model, and space
last_10_months = last_10_months.drop(columns=["model", "space", "dataset"])
# pretiffy the date column to not have 00:00:00
last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m")
# drop the first row
last_10_months = last_10_months.drop(last_10_months.index[0])
# order the columns date, total, total_change
last_10_months = last_10_months[["date", "total_change"]]
# rename the columns
last_10_months = last_10_months.rename(
columns={"date": "Date", "total_change": "Month-to-Month Growth (PBs)"}
)
# Create a Plotly figure
fig = go.Figure()
# Define a color map for each type
color_map = {
"model": px.colors.qualitative.Alphabet[3],
"space": px.colors.qualitative.Alphabet[2],
"dataset": px.colors.qualitative.Alphabet[9],
}
# Add a scatter trace for each type
for column in cumulative_df.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df.index,
y=cumulative_df[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize(),
line=dict(color=color_map.get(column, "black")), # Use color map
)
)
# Add a scatter trace for each type
for column in cumulative_df_compressed.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df_compressed.index,
y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize() + " (Compressed)",
line=dict(color=color_map.get(column, "black"), dash="dash"),
)
)
# Update layout
fig.update_layout(
title="Cumulative Growth of Models, Spaces, and Datasets Over Time<br><sup>Dotted lines represent growth with file-level deduplication</sup>",
xaxis_title="Date",
yaxis_title="Cumulative Size (PBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig, last_10_months
def plot_total_sum(by_type_arr):
# Sort the array by size in decreasing order
by_type_arr = sorted(by_type_arr, key=lambda x: x[1], reverse=True)
# Create a Plotly figure
fig = go.Figure()
# Add a bar trace for each type
for type, size in by_type_arr:
fig.add_trace(
go.Bar(
x=[type],
y=[size / 1e15], # Convert to petabytes
name=type.capitalize(),
)
)
# Update layout
fig.update_layout(
title="Top 20 File Extensions by Total Size",
xaxis_title="File Extension",
yaxis_title="Total Size (PBs)",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
colorway=px.colors.qualitative.Alphabet, # Use Plotly color palette
)
return fig
def filter_by_extension_month(_df, _extension):
"""
Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly.
Parameters:
_df (DataFrame): The input DataFrame containing the data.
extension (str): The extension to filter the DataFrame by. If set to "All", no filtering is applied.
Returns:
fig (Figure): The Plotly figure object representing the line plot.
"""
# Filter the DataFrame by the specified extension or extensions
if len(_extension) == 1 and "All" in _extension or len(_extension) == 0:
pass
else:
_df = _df[_df["extension"].isin(_extension)].copy()
# Convert year and month into a datetime column and sort by date
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
_df = _df.sort_values(by="date")
# Pivot the DataFrame to get the total size for each extension and make this plotable as a time series
pivot_df = _df.pivot_table(
index="date", columns="extension", values="total_size"
).fillna(0)
# Plot!!
fig = go.Figure()
for i, column in enumerate(pivot_df.columns):
if column != "":
fig.add_trace(
go.Scatter(
x=pivot_df.index,
y=pivot_df[column] / 1e12, # Convert to petabytes
mode="lines",
name=column,
line=dict(color=px.colors.qualitative.Alphabet[i]),
)
)
# Update layout
fig.update_layout(
title="Monthly Additions of LFS Files by Extension (in TBs)",
xaxis_title="Date",
yaxis_title="Size (TBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
# Create a gradio blocks interface and launch a demo
with gr.Blocks() as demo:
df, file_df, by_type, by_extension, by_extension_month = process_dataset()
# Add a heading
gr.Markdown("# Git LFS Analysis Across the Hub")
gr.Markdown(
"The Hugging Face Hub has just crossed 1,000,000 models - but where is all that data stored? The short answer is Git LFS. This analysis dives into the LFS storage on the Hub, breaking down the data by repository type, file extension, and growth over time."
)
gr.Markdown(
"Now, you might ask yourself, 'Why are you doing this?' Well, the [Xet Team](https://huggingface.co/xet-team) is a [new addition to Hugging Face](https://huggingface.co/blog/xethub-joins-hf), bringing a new way to store massive datasets and models to enable ML teams to operate like software teams: Quickly and without friction. Because this story all starts with storage, that's where we've begun with our own deep dives into what the Hub holds. As part of this, we've included a look at what happens with just one simple deduplication strategy - deduplicating at the file level. Read on to see more!"
)
with gr.Row():
# scale so that
# group the data by month and year and compute a cumulative sum of the total_size column
fig, last_10_months = cumulative_growth_plot_analysis(df, file_df)
with gr.Column(scale=1):
gr.Markdown("# Repository Growth")
gr.Markdown(
"The cumulative growth of models, spaces, and datasets over time can be seen in the adjacent chart. Beside that is a view of the total change, from the previous month to the current one, of LFS files stored on the hub over 2024. We're averaging nearly **2.3 PBs uploaded to LFS per month!**"
)
gr.Dataframe(last_10_months, height=250)
with gr.Column(scale=3):
gr.Plot(fig)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"This table shows the total number of files and cumulative size of those files across all repositories on the Hub. These numbers might be hard to grok, so let's try to put them in context. The last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31). The Spaces repositories alone outpaces that. Meanwhile, between Datasets and Model repos, the Hub stores **64 Common Crawls** 🤯."
)
with gr.Column(scale=3):
gr.Dataframe(by_type)
# Add a heading
gr.Markdown("## File Extension Analysis")
gr.Markdown(
"Breaking this down by file extension, some interesting trends emerge. [Safetensors](https://huggingface.co/docs/safetensors/en/index) are quickly becoming the defacto standard on the hub, accounting for over 7PBs (25%) of LFS storage. The top 20 file extensions seen here and in the table below account for 82% of all LFS storage on the hub."
)
# Get the top 10 file extnesions by size
by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22)
# get the top 10 file extensions by count
# by_extension_count = by_extension.sort_values(by="count", ascending=False).head(20)
# make a pie chart of the by_extension_size dataframe
gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values))
# drop the unnamed: 0 column
by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"])
# average size
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["size"].astype(float) / by_extension_size["count"]
)
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["Average File Size (MBs)"] / 1e6
)
by_extension_size["Average File Size (MBs)"] = by_extension_size[
"Average File Size (MBs)"
].map("{:.2f}".format)
# format the size column
by_extension_size = format_dataframe_size_column(by_extension_size, "size")
# Rename the other columns
by_extension_size = by_extension_size.rename(
columns={
"extension": "File Extension",
"count": "Number of Files",
"size": "Total Size (PBs)",
}
)
gr.Dataframe(by_extension_size)
gr.Markdown("## File Extension Growth Over Time")
gr.Markdown(
"Want to dig a little deeper? Select a file extension to see how many bytes of that type were uploaded to the Hub each month."
)
# build a dropdown using the unique values in the extension column
extension = gr.Dropdown(
choices=by_extension["extension"].unique().tolist(),
value="All",
allow_custom_value=True,
multiselect=True,
)
_by_extension_month = gr.State(by_extension_month)
gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension])
# launch the dang thing
demo.launch()
|