Spaces:
Running
Running
File size: 21,591 Bytes
1f81beb a57b3d3 f20b5b5 a57b3d3 f20b5b5 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb 6118d5d 1f81beb f6db30c 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6118d5d 6c1172f 6118d5d 6c1172f 1f81beb 6118d5d 1f81beb 6118d5d 1f81beb 6c1172f 1f81beb 6c1172f 6118d5d 6c1172f 1f81beb 6118d5d 1f81beb 9c5987b 1f81beb 6c1172f 1f81beb f09a364 1f81beb 6118d5d 1f81beb f20b5b5 1f81beb a57b3d3 1f81beb f6db30c 6c1172f f6db30c 6118d5d f6db30c f09a364 f6db30c 9c5987b f6db30c 9c5987b f6db30c 6c1172f f20b5b5 6c1172f 1f81beb 6118d5d 1f81beb 6c1172f f09a364 6c1172f 6118d5d f09a364 9c5987b f09a364 9c5987b f09a364 9c5987b f09a364 6c1172f 6118d5d f09a364 f20b5b5 f09a364 f20b5b5 f09a364 6c1172f 1f81beb f09a364 1f81beb f09a364 1f81beb 6118d5d f09a364 6c1172f 6118d5d f09a364 1f81beb 6c1172f 6118d5d f09a364 1f81beb f09a364 6c1172f f09a364 1f81beb f09a364 1f81beb 6c1172f 1f81beb 3522965 1f81beb 6c1172f 1f81beb 6c1172f f09a364 6c1172f 1f81beb 6c1172f f09a364 6c1172f f09a364 6118d5d 6c1172f f6db30c f09a364 f6db30c 1f81beb f6db30c 6c1172f f6db30c 9c5987b f09a364 9c5987b 1f81beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import gradio as gr
import pandas as pd
from plotly import graph_objects as go
import plotly.io as pio
import plotly.express as px
# @TODO: Add a custom template to the plotly figure
"""
pio.templates["custom"] = go.layout.Template()
pio.templates["custom"].layout = dict(
plot_bgcolor="#bde5ec", paper_bgcolor="#bbd5da"
)
# Set the default theme to "plotly_dark"
pio.templates.default = "custom"
"""
def process_dataset():
"""
Process the dataset and perform the following operations:
1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files.
2. Convert the total size to petabytes and format it to two decimal places.
3. Capitalize the 'type' column in the file_counts_and_sizes dataframe.
4. Rename the columns in the file_counts_and_sizes dataframe.
5. Sort the file_counts_and_sizes dataframe by total size in descending order.
6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe.
7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes.
"""
file_counts_and_sizes = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet"
)
repo_by_size_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet"
)
unique_files_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet"
)
file_extensions = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet"
)
# read the file_extensions_by_month.parquet file
file_extensions_by_month = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet"
)
# drop any nas
file_extensions_by_month = file_extensions_by_month.dropna()
file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize()
# update the column name to 'total size (PB)'
file_counts_and_sizes = file_counts_and_sizes.rename(
columns={
"type": "Repository Type",
"num_files": "Number of Files",
"total_size": "Total Size (PBs)",
}
)
file_counts_and_sizes = file_counts_and_sizes.drop(columns=["Number of Files"])
# sort the dataframe by total size in descending order
file_counts_and_sizes = file_counts_and_sizes.sort_values(
by="Total Size (PBs)", ascending=False
)
# drop nas from the extension column
file_extensions = file_extensions.dropna(subset=["extension"])
return (
repo_by_size_df,
unique_files_df,
file_counts_and_sizes,
file_extensions,
file_extensions_by_month,
)
def cumulative_growth_df(_df):
# Sort by date to ensure correct cumulative sum
_df = _df.sort_values(by="date")
# Pivot the dataframe to get the totalsize
pivot_df = _df.pivot_table(
index="date", columns="type", values="totalsize", aggfunc="sum"
).fillna(0)
# Calculate cumulative sum
cumulative_df = pivot_df.cumsum()
return cumulative_df
def compare_last_10_months(_cumulative_df, _cumulative_df_compressed):
last_10_months = _cumulative_df.tail(10).copy()
last_10_months["total"] = last_10_months.sum(axis=1)
last_10_months["total_change"] = last_10_months["total"].diff()
last_10_months["compressed_change"] = (
_cumulative_df_compressed.tail(10).sum(axis=1).diff()
)
last_10_months["savings"] = (
last_10_months["total_change"] - last_10_months["compressed_change"]
)
last_10_months = format_dataframe_size_column(
last_10_months, ["total_change", "compressed_change", "savings"]
)
last_10_months["date"] = _cumulative_df.tail(10).index
# drop the dataset, model, and space
last_10_months = last_10_months.drop(columns=["model", "space", "dataset"])
# pretiffy the date column to not have 00:00:00
last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m")
# drop the first row
last_10_months = last_10_months.drop(last_10_months.index[0])
# order the columns date, total, total_change
last_10_months = last_10_months[
["date", "total_change", "compressed_change", "savings"]
]
# rename the columns
last_10_months = last_10_months.rename(
columns={
"date": "Date",
"total_change": "Month-to-Month Growth (PBs)",
"compressed_change": "Growth with File-Level Deduplication (PBs)",
"savings": "Dedupe Savings (PBs)",
}
)
return last_10_months
def tabular_analysis(repo_sizes, cumulative_df, cumulative_df_compressed):
# create a new column in the repository sizes dataframe for "compressed size" and set it to empty atif rist
repo_sizes["Compressed Size (PBs)"] = ""
repo_sizes["Dedupe Savings (PBs)"] = ""
for column in cumulative_df.columns:
cum_repo_size = cumulative_df[column].iloc[-1]
comp_repo_size = cumulative_df_compressed[column].iloc[-1]
repo_size_diff = cum_repo_size - comp_repo_size
repo_sizes.loc[
repo_sizes["Repository Type"] == column.capitalize(),
"Compressed Size (PBs)",
] = comp_repo_size
repo_sizes.loc[
repo_sizes["Repository Type"] == column.capitalize(), "Dedupe Savings (PBs)"
] = repo_size_diff
# add a row that sums the total size and compressed size
repo_sizes.loc["Total"] = repo_sizes.sum()
repo_sizes.loc["Total", "Repository Type"] = "Total"
return repo_sizes
def cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed):
"""
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.
Args:
df (DataFrame): The input dataframe containing the data.
df_compressed (DataFrame): The input dataframe containing the compressed data.
Returns:
tuple: A tuple containing two elements:
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
- last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes.
Raises:
None
"""
# Create a Plotly figure
fig = go.Figure()
# Define a color map for each type
color_map = {
"model": px.colors.qualitative.Alphabet[3],
"space": px.colors.qualitative.Alphabet[2],
"dataset": px.colors.qualitative.Alphabet[9],
}
# Add a scatter trace for each type
for column in cumulative_df.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df.index,
y=cumulative_df[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize(),
line=dict(color=color_map.get(column, "black")), # Use color map
)
)
# Add a scatter trace for each type
for column in cumulative_df_compressed.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df_compressed.index,
y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize() + " (File-Level Deduplication)",
line=dict(color=color_map.get(column, "black"), dash="dash"),
)
)
# Update layout
fig.update_layout(
title="Cumulative Growth of Models, Spaces, and Datasets Over Time<br><sup>Dotted lines represent growth with file-level deduplication</sup>",
xaxis_title="Date",
yaxis_title="Cumulative Size (PBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
def cumulative_growth_single(_df):
"""
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.
Args:
df (DataFrame): The input dataframe containing the data.
Returns:
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
Raises:
None
"""
# Create a Plotly figure
fig = go.Figure()
# Define a color map for each type
color_map = {
"model": px.colors.qualitative.Alphabet[3],
"space": px.colors.qualitative.Alphabet[2],
"dataset": px.colors.qualitative.Alphabet[9],
}
# Add a scatter trace for each type
for column in _df.columns:
fig.add_trace(
go.Scatter(
x=_df.index,
y=_df[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize(),
line=dict(color=color_map.get(column, "black")), # Use color map
)
)
# Update layout
fig.update_layout(
title="Cumulative Growth of Models, Spaces, and Datasets",
xaxis_title="Date",
yaxis_title="Size (PBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
def plot_total_sum(by_type_arr):
# Sort the array by size in decreasing order
by_type_arr = sorted(by_type_arr, key=lambda x: x[1])
# Create a Plotly figure
fig = go.Figure()
# Add a bar trace for each type
for type, size in by_type_arr:
fig.add_trace(
go.Bar(
x=[type],
y=[size / 1e15], # Convert to petabytes
name=type.capitalize(),
)
)
# Update layout
fig.update_layout(
title="Top 20 File Extensions by Total Size (in PBs)",
xaxis_title="File Extension",
yaxis_title="Total Size (PBs)",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
colorway=px.colors.qualitative.Alphabet, # Use Plotly color palette
)
return fig
def filter_by_extension_month(_df, _extension):
"""
Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly.
Parameters:
_df (DataFrame): The input DataFrame containing the data.
extension (str): The extension to filter the DataFrame by. If None, no filtering is applied.
Returns:
fig (Figure): The Plotly figure object representing the line plot.
"""
# Filter the DataFrame by the specified extension or extensions
if _extension is None:
pass
elif len(_extension) == 0:
pass
else:
_df = _df[_df["extension"].isin(_extension)].copy()
# Convert year and month into a datetime column and sort by date
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
_df = _df.sort_values(by="date")
# Pivot the DataFrame to get the total size for each extension and make this plotable as a time series
pivot_df = _df.pivot_table(
index="date", columns="extension", values="total_size"
).fillna(0)
# Plot!!
fig = go.Figure()
for i, column in enumerate(pivot_df.columns):
if column != "":
fig.add_trace(
go.Scatter(
x=pivot_df.index,
y=pivot_df[column] * 1e3,
mode="lines",
name=column,
line=dict(color=px.colors.qualitative.Alphabet[i]),
)
)
# Update layout
fig.update_layout(
title="Monthly Additions of LFS Files by Extension (in TBs)",
xaxis_title="Date",
yaxis_title="Size (TBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
def area_plot_by_extension_month(_df):
_df["total_size"] = _df["total_size"] / 1e15
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
# make a plotly area chart with data and extension
fig = px.area(_df, x="date", y="total_size", color="extension")
# Update layout
fig.update_layout(
title="File Extension Monthly Additions (in PBs) Over Time",
xaxis_title="Date",
yaxis_title="Size (PBs)",
legend_title="Type",
# format y-axis to be PBs (currently bytes) with two decimal places
yaxis=dict(tickformat=".2f"),
)
return fig
## Utility functions
def div_px(height):
"""
Returns a string representing a div element with the specified height in pixels.
"""
return f"<div style='height: {height}px;'></div>"
def format_dataframe_size_column(_df, column_names):
"""
Format the size to petabytes and return the formatted size.
"""
for column_name in column_names:
_df[column_name] = _df[column_name] / 1e15
_df[column_name] = _df[column_name].map("{:.2f}".format)
return _df
def month_year_to_date(_df):
"""
Converts the 'year' and 'month' columns in the given DataFrame to a single 'date' column.
"""
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
return _df
# Create a gradio blocks interface and launch a demo
with gr.Blocks() as demo:
df, file_df, by_repo_type, by_extension, by_extension_month = process_dataset()
# Convert year and month into a datetime column
df = month_year_to_date(df)
df_compressed = month_year_to_date(file_df)
# Calculate the cumulative growth of models, spaces, and datasets over time
cumulative_df = cumulative_growth_df(df)
cumulative_df_compressed = cumulative_growth_df(df_compressed)
last_10_months = compare_last_10_months(cumulative_df, cumulative_df_compressed)
by_repo_type_analysis = tabular_analysis(
by_repo_type, cumulative_df, cumulative_df_compressed
)
# Add top level heading and introduction text
gr.Markdown("# Git LFS Usage across the Hub")
gr.Markdown(
"Ever wonder what the Hugging Face Hub holds? This is the space for you!"
)
gr.Markdown(
"The Hub stores all files using a combination of [Gitaly](https://gitlab.com/gitlab-org/gitaly) (small files) on EBS and [Git LFS](https://git-lfs.com/) (large files > 10MB) on S3. As part of the [Xet team](https://huggingface.co/xet-team), one of our goals is to improve Hub storage and transfer efficiency, and understanding how and what things are currently stored helps us establish a baseline. This analysis uses a snapshot of the Hub's Git LFS usage from March 2022 - September 2024, and we plan to update it regularly to track trends. We're starting with metrics around raw storage by repository type and size/count by file extension - if you're interested in other metrics, drop your suggestions in our [discussions](https://huggingface.co/spaces/xet-team/lfs-analysis/discussions)!"
)
gr.HTML(div_px(25))
# Cumulative growth analysis
gr.Markdown("## Storage by Repository Type")
gr.Markdown(
"The chart below shows the growth of Git LFS storage usage by repository type since March 2022."
)
# get the figure for the cumulative growth plot without dedupe analysis
cumulative_fig = cumulative_growth_single(cumulative_df)
gr.Plot(cumulative_fig)
gr.HTML(div_px(5))
# @TODO Talk to Allison about variant="panel"
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Current Storage Usage")
gr.Markdown(
"As of September 20, 2024, total files stored in Git LFS summed to almost 29 PB. To put this into perspective, the last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31) - the Hub stores the equivalent of more than **64 Common Crawls** 🤯."
)
with gr.Column(scale=3):
# Convert the total size to petabytes and format to two decimal places
current_storage = format_dataframe_size_column(
by_repo_type_analysis,
["Total Size (PBs)", "Compressed Size (PBs)", "Dedupe Savings (PBs)"],
)
gr.Dataframe(current_storage[["Repository Type", "Total Size (PBs)"]])
gr.HTML(div_px(25))
# File Extension analysis
gr.Markdown("## Large Files Stored by File Extension")
gr.Markdown(
"What types of files are stored on the Hub? The Xet team's backend architecture allows for storage optimizations by file type, so seeing the breakdown of the most popular stored file types helps to prioritize our roadmap. The following sections filter the analysis to the top 20 file extensions stored (by bytes) using Git LFS. Taken together, these 20 file extensions account for 82% of the total bytes stored in LFS."
)
gr.Markdown(
"[Safetensors](https://huggingface.co/docs/safetensors/en/index) is quickly becoming the defacto standard on the Hub for storing tensor files, accounting for over 7PBs (25%) of LFS storage. [GGUF (GPT-Generated Unified Format)](https://huggingface.co/docs/hub/gguf), a format for storing tensor files with a different set of optimizations, is also on the rise, accounting for 3.2 PBs (11%) of LFS storage."
)
# Get the top 10 file extensions by size
by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22)
# make a bar chart of the by_extension_size dataframe
gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values))
# drop the unnamed: 0 column
by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"])
# average size
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["size"].astype(float) / by_extension_size["count"]
)
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["Average File Size (MBs)"] / 1e6
)
by_extension_size["Average File Size (MBs)"] = by_extension_size[
"Average File Size (MBs)"
].map("{:.2f}".format)
# format the size column
by_extension_size = format_dataframe_size_column(by_extension_size, ["size"])
# Rename the other columns
by_extension_size = by_extension_size.rename(
columns={
"extension": "File Extension",
"count": "Number of Files",
"size": "Total Size (PBs)",
}
)
gr.HTML(div_px(5))
gr.Markdown(
"This tabular view shows the same top 20 file extensions by total stored size, number of files, and average file size."
)
gr.Dataframe(
by_extension_size[
[
"File Extension",
"Total Size (PBs)",
"Number of Files",
"Average File Size (MBs)",
]
]
)
gr.HTML(div_px(5))
gr.Markdown("### Storage Growth by File Extension (Monthly PBs Added)")
gr.Markdown(
"The following area chart shows the number of bytes added to LFS storage each month, faceted by file extension."
)
gr.Plot(area_plot_by_extension_month(by_extension_month))
gr.HTML(div_px(5))
gr.Markdown(
"To dig deeper, use the dropdown to filter by file extension and see the bytes added (in TBs) each month for specific file types."
)
# build a dropdown using the unique values in the extension column
extension = gr.Dropdown(
choices=by_extension["extension"].unique().tolist(),
multiselect=True,
label="File Extension",
)
_by_extension_month = gr.State(by_extension_month)
gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension])
gr.HTML(div_px(25))
# Optimizations
gr.Markdown("## Optimization 1: File-level Deduplication")
gr.Markdown(
"The first improvement we can make to Hub storage is to add file-level deduplication. Since forking any Hub repository makes copies of the files, a scan of existing files unsurprisingly shows that some files match exactly. The following chart shows the storage growth chart from above with additional dashed lines showing the potential savings from deduplicating at the file level."
)
dedupe_fig = cumulative_growth_plot_analysis(
cumulative_df, cumulative_df_compressed
)
gr.Plot(dedupe_fig)
gr.HTML(div_px(5))
# @TODO Talk to Allison about variant="panel"
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Current Storage Usage + File-level Deduplication")
gr.Markdown(
"This simple change to the storage backend will save 3.24 PBs (the equivalent of 7.2 Common Crawls)."
)
with gr.Column(scale=3):
# Convert the total size to petabytes and format to two decimal places
gr.Dataframe(by_repo_type)
gr.HTML(div_px(5))
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Month-to-Month Growth + File-level Deduplication")
gr.Markdown(
"This table shows month-to-month growth in model, dataset, and space storage. In 2024, the Hub has averaged nearly **2.3 PBs uploaded to Git LFS per month**. Deduplicating at the file level saves nearly 225 TB (half a Common Crawl) monthly."
)
with gr.Column(scale=3):
gr.Dataframe(last_10_months)
# launch the dang thing
demo.launch()
|