Spaces:
Running
Running
File size: 19,972 Bytes
1f81beb a57b3d3 f20b5b5 a57b3d3 f20b5b5 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb f6db30c 1f81beb 6118d5d 1f81beb f6db30c 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6118d5d 6c1172f 6118d5d 6c1172f 1f81beb 6118d5d 1f81beb 6118d5d 1f81beb 6c1172f 1f81beb 6c1172f 6118d5d 6c1172f 1f81beb 6118d5d 1f81beb 9c5987b 1f81beb 6c1172f 1f81beb 6118d5d 1f81beb f20b5b5 1f81beb a57b3d3 1f81beb f6db30c 6c1172f f6db30c 6118d5d f6db30c 6c1172f f6db30c 9c5987b f6db30c 9c5987b f6db30c 6c1172f f20b5b5 6c1172f 1f81beb 6118d5d 1f81beb 6c1172f 6118d5d 6c1172f 6118d5d 9c5987b f20b5b5 9c5987b 6c1172f 6118d5d f20b5b5 6c1172f 1f81beb f20b5b5 1f81beb 6118d5d 6c1172f 6118d5d 6c1172f 1f81beb f20b5b5 1f81beb 6c1172f f20b5b5 6c1172f 1f81beb f20b5b5 1f81beb 6c1172f 6118d5d 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 3522965 1f81beb 6c1172f 1f81beb 6c1172f 1f81beb 6c1172f 6118d5d 6c1172f f6db30c f20b5b5 f6db30c 1f81beb f6db30c 6c1172f f6db30c 9c5987b 1f81beb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import gradio as gr
import pandas as pd
from plotly import graph_objects as go
import plotly.io as pio
import plotly.express as px
# @TODO: Add a custom template to the plotly figure
"""
pio.templates["custom"] = go.layout.Template()
pio.templates["custom"].layout = dict(
plot_bgcolor="#bde5ec", paper_bgcolor="#bbd5da"
)
# Set the default theme to "plotly_dark"
pio.templates.default = "custom"
"""
def process_dataset():
"""
Process the dataset and perform the following operations:
1. Read the file_counts_and_sizes, repo_by_size_df, unique_files_df, and file_extensions data from parquet files.
2. Convert the total size to petabytes and format it to two decimal places.
3. Capitalize the 'type' column in the file_counts_and_sizes dataframe.
4. Rename the columns in the file_counts_and_sizes dataframe.
5. Sort the file_counts_and_sizes dataframe by total size in descending order.
6. Drop rows with missing values in the 'extension' column of the file_extensions dataframe.
7. Return the repo_by_size_df, unique_files_df, file_counts_and_sizes, and file_extensions dataframes.
"""
file_counts_and_sizes = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_counts_and_sizes.parquet"
)
repo_by_size_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size.parquet"
)
unique_files_df = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/repo_by_size_file_dedupe.parquet"
)
file_extensions = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions.parquet"
)
# read the file_extensions_by_month.parquet file
file_extensions_by_month = pd.read_parquet(
"hf://datasets/xet-team/lfs-analysis-data/transformed/file_extensions_by_month.parquet"
)
# drop any nas
file_extensions_by_month = file_extensions_by_month.dropna()
file_counts_and_sizes["type"] = file_counts_and_sizes["type"].str.capitalize()
# update the column name to 'total size (PB)'
file_counts_and_sizes = file_counts_and_sizes.rename(
columns={
"type": "Repository Type",
"num_files": "Number of Files",
"total_size": "Total Size (PBs)",
}
)
file_counts_and_sizes = file_counts_and_sizes.drop(columns=["Number of Files"])
# sort the dataframe by total size in descending order
file_counts_and_sizes = file_counts_and_sizes.sort_values(
by="Total Size (PBs)", ascending=False
)
# drop nas from the extension column
file_extensions = file_extensions.dropna(subset=["extension"])
return (
repo_by_size_df,
unique_files_df,
file_counts_and_sizes,
file_extensions,
file_extensions_by_month,
)
def cumulative_growth_df(_df):
# Sort by date to ensure correct cumulative sum
_df = _df.sort_values(by="date")
# Pivot the dataframe to get the totalsize
pivot_df = _df.pivot_table(
index="date", columns="type", values="totalsize", aggfunc="sum"
).fillna(0)
# Calculate cumulative sum
cumulative_df = pivot_df.cumsum()
return cumulative_df
def compare_last_10_months(_cumulative_df, _cumulative_df_compressed):
last_10_months = _cumulative_df.tail(10).copy()
last_10_months["total"] = last_10_months.sum(axis=1)
last_10_months["total_change"] = last_10_months["total"].diff()
last_10_months["compressed_change"] = (
_cumulative_df_compressed.tail(10).sum(axis=1).diff()
)
last_10_months["savings"] = (
last_10_months["total_change"] - last_10_months["compressed_change"]
)
last_10_months = format_dataframe_size_column(
last_10_months, ["total_change", "compressed_change", "savings"]
)
last_10_months["date"] = _cumulative_df.tail(10).index
# drop the dataset, model, and space
last_10_months = last_10_months.drop(columns=["model", "space", "dataset"])
# pretiffy the date column to not have 00:00:00
last_10_months["date"] = last_10_months["date"].dt.strftime("%Y-%m")
# drop the first row
last_10_months = last_10_months.drop(last_10_months.index[0])
# order the columns date, total, total_change
last_10_months = last_10_months[
["date", "total_change", "compressed_change", "savings"]
]
# rename the columns
last_10_months = last_10_months.rename(
columns={
"date": "Date",
"total_change": "Month-to-Month Growth (PBs)",
"compressed_change": "Growth with File-Level Deduplication (PBs)",
"savings": "Dedupe Savings (PBs)",
}
)
return last_10_months
def tabular_analysis(repo_sizes, cumulative_df, cumulative_df_compressed):
# create a new column in the repository sizes dataframe for "compressed size" and set it to empty atif rist
repo_sizes["Compressed Size (PBs)"] = ""
repo_sizes["Dedupe Savings (PBs)"] = ""
for column in cumulative_df.columns:
cum_repo_size = cumulative_df[column].iloc[-1]
comp_repo_size = cumulative_df_compressed[column].iloc[-1]
repo_size_diff = cum_repo_size - comp_repo_size
repo_sizes.loc[
repo_sizes["Repository Type"] == column.capitalize(),
"Compressed Size (PBs)",
] = comp_repo_size
repo_sizes.loc[
repo_sizes["Repository Type"] == column.capitalize(), "Dedupe Savings (PBs)"
] = repo_size_diff
# add a row that sums the total size and compressed size
repo_sizes.loc["Total"] = repo_sizes.sum()
repo_sizes.loc["Total", "Repository Type"] = "Total"
return repo_sizes
def cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed):
"""
Calculates the cumulative growth of models, spaces, and datasets over time and generates a plot and dataframe from the analysis.
Args:
df (DataFrame): The input dataframe containing the data.
df_compressed (DataFrame): The input dataframe containing the compressed data.
Returns:
tuple: A tuple containing two elements:
- fig (Figure): The Plotly figure showing the cumulative growth of models, spaces, and datasets over time.
- last_10_months (DataFrame): The last 10 months of data showing the month-to-month growth in petabytes.
Raises:
None
"""
# Create a Plotly figure
fig = go.Figure()
# Define a color map for each type
color_map = {
"model": px.colors.qualitative.Alphabet[3],
"space": px.colors.qualitative.Alphabet[2],
"dataset": px.colors.qualitative.Alphabet[9],
}
# Add a scatter trace for each type
for column in cumulative_df.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df.index,
y=cumulative_df[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize(),
line=dict(color=color_map.get(column, "black")), # Use color map
)
)
# Add a scatter trace for each type
for column in cumulative_df_compressed.columns:
fig.add_trace(
go.Scatter(
x=cumulative_df_compressed.index,
y=cumulative_df_compressed[column] / 1e15, # Convert to petabytes
mode="lines",
name=column.capitalize() + " (File-Level Deduplication)",
line=dict(color=color_map.get(column, "black"), dash="dash"),
)
)
# Update layout
fig.update_layout(
title="Cumulative Growth of Models, Spaces, and Datasets Over Time<br><sup>Dotted lines represent growth with file-level deduplication</sup>",
xaxis_title="Date",
yaxis_title="Cumulative Size (PBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
def plot_total_sum(by_type_arr):
# Sort the array by size in decreasing order
by_type_arr = sorted(by_type_arr, key=lambda x: x[1])
# Create a Plotly figure
fig = go.Figure()
# Add a bar trace for each type
for type, size in by_type_arr:
fig.add_trace(
go.Bar(
x=[type],
y=[size / 1e15], # Convert to petabytes
name=type.capitalize(),
)
)
# Update layout
fig.update_layout(
title="Top 20 File Extensions by Total Size (in PBs)",
xaxis_title="File Extension",
yaxis_title="Total Size (PBs)",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
colorway=px.colors.qualitative.Alphabet, # Use Plotly color palette
)
return fig
def filter_by_extension_month(_df, _extension):
"""
Filters the given DataFrame (_df) by the specified extension and creates a line plot using Plotly.
Parameters:
_df (DataFrame): The input DataFrame containing the data.
extension (str): The extension to filter the DataFrame by. If None, no filtering is applied.
Returns:
fig (Figure): The Plotly figure object representing the line plot.
"""
# Filter the DataFrame by the specified extension or extensions
if _extension is None:
pass
elif len(_extension) == 0:
pass
else:
_df = _df[_df["extension"].isin(_extension)].copy()
# Convert year and month into a datetime column and sort by date
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
_df = _df.sort_values(by="date")
# Pivot the DataFrame to get the total size for each extension and make this plotable as a time series
pivot_df = _df.pivot_table(
index="date", columns="extension", values="total_size"
).fillna(0)
# Plot!!
fig = go.Figure()
for i, column in enumerate(pivot_df.columns):
if column != "":
fig.add_trace(
go.Scatter(
x=pivot_df.index,
y=pivot_df[column] / 1e12, # Convert to TBs
mode="lines",
name=column,
line=dict(color=px.colors.qualitative.Alphabet[i]),
)
)
# Update layout
fig.update_layout(
title="Monthly Additions of LFS Files by Extension (in TBs)",
xaxis_title="Date",
yaxis_title="Size (TBs)",
legend_title="Type",
yaxis=dict(tickformat=".2f"), # Format y-axis labels to 2 decimal places
)
return fig
def area_plot_by_extension_month(_df):
_df["total_size"] = _df["total_size"] / 1e15
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
# make a plotly area chart with data and extension
fig = px.area(_df, x="date", y="total_size", color="extension")
# Update layout
fig.update_layout(
title="File Extension Monthly Additions (in PBs) Over Time",
xaxis_title="Date",
yaxis_title="Size (PBs)",
legend_title="Type",
# format y-axis to be PBs (currently bytes) with two decimal places
yaxis=dict(tickformat=".2f"),
)
return fig
## Utility functions
def div_px(height):
"""
Returns a string representing a div element with the specified height in pixels.
"""
return f"<div style='height: {height}px;'></div>"
def format_dataframe_size_column(_df, column_names):
"""
Format the size to petabytes and return the formatted size.
"""
for column_name in column_names:
_df[column_name] = _df[column_name] / 1e15
_df[column_name] = _df[column_name].map("{:.2f}".format)
return _df
def month_year_to_date(_df):
"""
Converts the 'year' and 'month' columns in the given DataFrame to a single 'date' column.
"""
_df["date"] = pd.to_datetime(_df[["year", "month"]].assign(day=1))
return _df
# Create a gradio blocks interface and launch a demo
with gr.Blocks() as demo:
df, file_df, by_repo_type, by_extension, by_extension_month = process_dataset()
# Convert year and month into a datetime column
df = month_year_to_date(df)
df_compressed = month_year_to_date(file_df)
# Calculate the cumulative growth of models, spaces, and datasets over time
cumulative_df = cumulative_growth_df(df)
cumulative_df_compressed = cumulative_growth_df(df_compressed)
last_10_months = compare_last_10_months(cumulative_df, cumulative_df_compressed)
by_repo_type = tabular_analysis(
by_repo_type, cumulative_df, cumulative_df_compressed
)
# get the figure for the cumulative growth plot and the last 10 months dataframe
fig = cumulative_growth_plot_analysis(cumulative_df, cumulative_df_compressed)
# Add top level heading and introduction text
gr.Markdown("# Git LFS Usage Across the Hub")
gr.Markdown(
"The Hugging Face Hub has just crossed 1,000,000 models - but where is all that data stored? Most of it is stored in Git LFS. This analysis dives into the LFS storage on the Hub, breaking down the data by repository type, file extension, and growth over time. The data is based on a snapshot of the Hub's LFS storage, starting in March 2022 and ending September 20th, 2024 (meaning the data is incomplete for September 2024). Right now, this is a one-time analysis, but as we do our work we hope to revisit and update the underlying data to provide more insights."
)
gr.Markdown(
"Now, you might ask yourself, 'Why are you doing this?' Well, the [Xet Team](https://huggingface.co/xet-team) is a [new addition to Hugging Face](https://huggingface.co/blog/xethub-joins-hf), bringing a new way to store massive datasets and models to enable ML teams to operate like software teams: Quickly and without friction. Because this story all starts with storage, that's where we've begun with our own deep dives into what the Hub holds. As part of this, we've included a look at what happens with just one simple deduplication strategy - deduplicating at the file level. Read on to see more!"
)
gr.HTML(div_px(25))
# Cumulative growth analysis
gr.Markdown("## Repository Growth")
gr.Markdown(
"The plot below shows the growth of Git LFS storage on the Hub over the past two years. The solid lines represent the cumulative growth of models, spaces, and datasets, while the dashed lines represent the growth with file-level deduplication."
)
gr.Plot(fig)
gr.HTML(div_px(5))
# @TODO Talk to Allison about variant="panel"
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"In this table, we can see what the final picture looks like as of September 20th, 2024, along with the potential file-level deduplication savings."
)
gr.Markdown(
"To put this in context, the last [Common Crawl](https://commoncrawl.org/) download was [451 TBs](https://github.com/commoncrawl/cc-crawl-statistics/blob/master/stats/crawler/CC-MAIN-2024-38.json#L31). The Spaces repositories alone outpaces that! Meanwhile, between Datasets and Model repos, the Hub stores **64 Common Crawls** 🤯. Current estimates put file deduplication savings at approximately 3.24 PBs (7.2 Common Crawls)!"
)
with gr.Column(scale=3):
# Convert the total size to petabytes and format to two decimal places
by_repo_type = format_dataframe_size_column(
by_repo_type,
["Total Size (PBs)", "Compressed Size (PBs)", "Dedupe Savings (PBs)"],
)
gr.Dataframe(by_repo_type)
gr.HTML(div_px(5))
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"The month-to-month growth of models, spaces, can be seen in the adjacent table. In 2024, the Hub has averaged nearly **2.3 PBs uploaded to LFS per month!** By the same token, the monthly file deduplication savings are nearly 225TBs. "
)
gr.Markdown(
"Borrowing from the Common Crawl analogy, that's about *5 crawls* uploaded every month, with an _easy savings of half a crawl every month_ by deduplicating at the file-level!"
)
with gr.Column(scale=3):
gr.Dataframe(last_10_months)
gr.HTML(div_px(25))
# File Extension analysis
gr.Markdown("## File Extensions on the Hub")
gr.Markdown(
"Breaking this down by file extension, some interesting trends emerge. The following sections filter the analysis to the top 20 file extensions stored (in bytes) using LFS (which accounts for 82% of storage consumption)."
)
gr.Markdown(
"As is evident in the chart below, [Safetensors](https://huggingface.co/docs/safetensors/en/index) is quickly becoming the defacto standard on the Hub for storing tensor files, accounting for over 7PBs (25%) of LFS storage. If you want to know why you'd want to check out YAF (yet another format), this explanation from the [Safetensors docs](https://github.com/huggingface/safetensors?tab=readme-ov-file#yet-another-format-) is a good place to start. Speaking of YAF, [GGUF (GPT-Generated Unified Format)](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) is also on the rise, accounting for 3.2 PBs (11%) of LFS storage. GGUF, like Safetensors, is a format for storing tensor files, with a different set of optimizations. The Hub has a few [built-in tools](https://huggingface.co/docs/hub/en/gguf) for working with GGUF."
)
# Get the top 10 file extnesions by size
by_extension_size = by_extension.sort_values(by="size", ascending=False).head(22)
# make a bar chart of the by_extension_size dataframe
gr.Plot(plot_total_sum(by_extension_size[["extension", "size"]].values))
# drop the unnamed: 0 column
by_extension_size = by_extension_size.drop(columns=["Unnamed: 0"])
# average size
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["size"].astype(float) / by_extension_size["count"]
)
by_extension_size["Average File Size (MBs)"] = (
by_extension_size["Average File Size (MBs)"] / 1e6
)
by_extension_size["Average File Size (MBs)"] = by_extension_size[
"Average File Size (MBs)"
].map("{:.2f}".format)
# format the size column
by_extension_size = format_dataframe_size_column(by_extension_size, ["size"])
# Rename the other columns
by_extension_size = by_extension_size.rename(
columns={
"extension": "File Extension",
"count": "Number of Files",
"size": "Total Size (PBs)",
}
)
gr.HTML(div_px(5))
gr.Markdown(
"Below, we have a more detailed tabular view of the same top 20 file extensions by total size, number of files, and average file size."
)
gr.Dataframe(by_extension_size)
gr.HTML(div_px(5))
gr.Markdown("### File Extension Monthly Additions (in PBs)")
gr.Markdown(
"What if we want to see trends over time? The following area chart shows the number of bytes added to LFS storage each month, faceted by the most popular file extensions."
)
gr.Plot(area_plot_by_extension_month(by_extension_month))
gr.HTML(div_px(5))
gr.Markdown(
"To dig a little deeper, the following dropdown allows you to filter the area chart by file extension. Because we're dealing with individual file extensions, the data is presented in terabytes (TBs)."
)
# build a dropdown using the unique values in the extension column
extension = gr.Dropdown(
choices=by_extension["extension"].unique().tolist(),
multiselect=True,
label="File Extension",
)
_by_extension_month = gr.State(by_extension_month)
gr.Plot(filter_by_extension_month, inputs=[_by_extension_month, extension])
# launch the dang thing
demo.launch()
|