Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,48 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from ultralytics import YOLO
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Load YOLO model
|
7 |
-
model = YOLO("best.pt")
|
8 |
-
|
9 |
-
# Define the prediction function
|
10 |
-
def detect_species(files):
|
11 |
-
"""
|
12 |
-
Detect species in uploaded images using the YOLO model.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
files (list): List of uploaded image files.
|
16 |
-
|
17 |
-
Returns:
|
18 |
-
list: Annotated images or error messages for each file.
|
19 |
-
"""
|
20 |
-
annotated_images = []
|
21 |
-
for file in files: # Loop through the list of uploaded files
|
22 |
-
try:
|
23 |
-
# Open and process the image
|
24 |
-
image = Image.open(file)
|
25 |
-
image = np.array(image) # Convert to numpy array
|
26 |
-
results = model(image) # Run the YOLO model
|
27 |
-
annotated_image = results[0].plot() # Generate annotated image
|
28 |
-
annotated_images.append(annotated_image) # Add to results
|
29 |
-
except Exception as e:
|
30 |
-
# Handle errors (e.g., unsupported or corrupt files)
|
31 |
-
error_message = f"Error processing file {file.name}: {str(e)}"
|
32 |
-
print(error_message) # Log the error
|
33 |
-
annotated_images.append(np.zeros((100, 100, 3))) # Placeholder image
|
34 |
-
return annotated_images
|
35 |
-
|
36 |
-
# Create the Gradio app
|
37 |
-
app = gr.Interface(
|
38 |
-
fn=detect_species,
|
39 |
-
inputs=gr.Files(file_types=["image"], label="Upload Images"), # Allow multiple image uploads
|
40 |
-
outputs=gr.Gallery(label="Detection Results"), # Display results in a gallery
|
41 |
-
title="
|
42 |
-
description="Upload one or more leaf images, and the model will detect the species.",
|
43 |
-
examples=["example1.jpg", "example2.jpg"], # Optional: Add example images
|
44 |
-
)
|
45 |
-
|
46 |
-
# Launch the app
|
47 |
-
if __name__ == "__main__":
|
48 |
-
app.launch(share=True) # Set share=True to get a public URL
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load YOLO model
|
7 |
+
model = YOLO("best.pt")
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def detect_species(files):
|
11 |
+
"""
|
12 |
+
Detect species in uploaded images using the YOLO model.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
files (list): List of uploaded image files.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
list: Annotated images or error messages for each file.
|
19 |
+
"""
|
20 |
+
annotated_images = []
|
21 |
+
for file in files: # Loop through the list of uploaded files
|
22 |
+
try:
|
23 |
+
# Open and process the image
|
24 |
+
image = Image.open(file)
|
25 |
+
image = np.array(image) # Convert to numpy array
|
26 |
+
results = model(image) # Run the YOLO model
|
27 |
+
annotated_image = results[0].plot() # Generate annotated image
|
28 |
+
annotated_images.append(annotated_image) # Add to results
|
29 |
+
except Exception as e:
|
30 |
+
# Handle errors (e.g., unsupported or corrupt files)
|
31 |
+
error_message = f"Error processing file {file.name}: {str(e)}"
|
32 |
+
print(error_message) # Log the error
|
33 |
+
annotated_images.append(np.zeros((100, 100, 3))) # Placeholder image
|
34 |
+
return annotated_images
|
35 |
+
|
36 |
+
# Create the Gradio app
|
37 |
+
app = gr.Interface(
|
38 |
+
fn=detect_species,
|
39 |
+
inputs=gr.Files(file_types=["image"], label="Upload Images"), # Allow multiple image uploads
|
40 |
+
outputs=gr.Gallery(label="Detection Results"), # Display results in a gallery
|
41 |
+
title="Finnish Meadow Plants Detection",
|
42 |
+
description="Upload one or more leaf images, and the model will detect the species.",
|
43 |
+
examples=["example1.jpg", "example2.jpg"], # Optional: Add example images
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the app
|
47 |
+
if __name__ == "__main__":
|
48 |
+
app.launch(share=True) # Set share=True to get a public URL
|