|
import gradio as gr |
|
import torch |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
from diffusers import StableVideoDiffusionPipeline |
|
from diffusers.utils import export_to_video |
|
from PIL import Image |
|
|
|
import random |
|
import spaces |
|
|
|
pipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe.to("cuda") |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
@spaces.GPU(duration=120) |
|
def sample( |
|
image: Image, |
|
seed: Optional[int] = 42, |
|
randomize_seed: bool = True, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 6, |
|
noise_aug_strength: float = 0.1, |
|
decoding_t: int = 3, |
|
frame_format: str = "webp", |
|
version: str = "svd_xt", |
|
device: str = "cuda", |
|
output_folder: str = "outputs", |
|
): |
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, max_64_bit_int) |
|
generator = torch.manual_seed(seed) |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
|
|
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] |
|
export_to_video(frames, video_path, fps=fps_id) |
|
|
|
return video_path, gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames), seed |
|
|
|
def resize_image(image, output_size=(1024, 576)): |
|
|
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
|
|
if image.width == output_size[0] and image.height == output_size[1]: |
|
return image |
|
|
|
|
|
if image_aspect > target_aspect: |
|
|
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = (new_width - output_size[0]) / 2 |
|
top = 0 |
|
right = (new_width + output_size[0]) / 2 |
|
bottom = output_size[1] |
|
else: |
|
|
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = 0 |
|
top = (new_height - output_size[1]) / 2 |
|
right = output_size[0] |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
|
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
return cropped_image |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact)) |
|
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd). |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image", type="pil") |
|
with gr.Accordion("Advanced options", open=False): |
|
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) |
|
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) |
|
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) |
|
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) |
|
frame_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="webp", interactive=True) |
|
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
generate_btn = gr.Button(value="Animate", variant="primary") |
|
|
|
with gr.Column(): |
|
video = gr.Video(label="Generated video") |
|
gallery = gr.Gallery(label="Generated frames") |
|
|
|
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) |
|
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format], outputs=[video, gallery, seed], api_name="video") |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, show_api=False) |