|
import gradio as gr
|
|
import torch
|
|
import os
|
|
import random
|
|
import time
|
|
import math
|
|
import spaces
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from typing import Optional, List, Union
|
|
|
|
from diffusers import StableVideoDiffusionPipeline, StableVideoDragNUWAPipeline
|
|
from diffusers.utils import export_to_video, export_to_gif
|
|
from PIL import Image
|
|
|
|
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
|
)
|
|
fps25Pipe.to("cuda")
|
|
|
|
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
|
|
)
|
|
fps14Pipe.to("cuda")
|
|
|
|
dragnuwaPipe = StableVideoDragNUWAPipeline.from_pretrained(
|
|
"a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None
|
|
)
|
|
dragnuwaPipe.to("cuda")
|
|
|
|
max_64_bit_int = 2**63 - 1
|
|
|
|
def animate(
|
|
image: Image,
|
|
seed: Optional[int] = 42,
|
|
randomize_seed: bool = True,
|
|
motion_bucket_id: int = 127,
|
|
fps_id: int = 25,
|
|
noise_aug_strength: float = 0.1,
|
|
decoding_t: int = 3,
|
|
video_format: str = "mp4",
|
|
frame_format: str = "webp",
|
|
version: str = "auto",
|
|
width: int = 1024,
|
|
height: int = 576,
|
|
motion_control: bool = False,
|
|
num_inference_steps: int = 25
|
|
):
|
|
start = time.time()
|
|
|
|
if image is None:
|
|
raise gr.Error("Please provide an image to animate.")
|
|
|
|
output_folder = "outputs"
|
|
image_data = resize_image(image, output_size=(width, height))
|
|
if image_data.mode == "RGBA":
|
|
image_data = image_data.convert("RGB")
|
|
|
|
if motion_control:
|
|
image_data = [image_data] * 3
|
|
|
|
if randomize_seed:
|
|
seed = random.randint(0, max_64_bit_int)
|
|
|
|
if version == "auto":
|
|
if 14 < fps_id:
|
|
version = "svdxt"
|
|
else:
|
|
version = "svd"
|
|
|
|
frames = animate_on_gpu(
|
|
image_data,
|
|
seed,
|
|
motion_bucket_id,
|
|
fps_id,
|
|
noise_aug_strength,
|
|
decoding_t,
|
|
version,
|
|
width,
|
|
height,
|
|
num_inference_steps
|
|
)
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
base_count = len(glob(os.path.join(output_folder, "*." + video_format)))
|
|
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format)
|
|
|
|
if video_format == "gif":
|
|
video_path = None
|
|
gif_path = result_path
|
|
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id)
|
|
else:
|
|
video_path = result_path
|
|
gif_path = None
|
|
export_to_video(frames, video_path, fps=fps_id)
|
|
|
|
end = time.time()
|
|
secondes = int(end - start)
|
|
minutes = math.floor(secondes / 60)
|
|
secondes = secondes - (minutes * 60)
|
|
hours = math.floor(minutes / 60)
|
|
minutes = minutes - (hours * 60)
|
|
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
|
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \
|
|
"The video has been generated in " + \
|
|
((str(hours) + " h, ") if hours != 0 else "") + \
|
|
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
|
str(secondes) + " sec."
|
|
|
|
return [
|
|
|
|
gr.update(value = video_path, visible = video_format != "gif"),
|
|
|
|
gr.update(value = gif_path, visible = video_format == "gif"),
|
|
|
|
gr.update(label = "πΎ Download animation in *." + video_format + " format", value=result_path, visible=True),
|
|
|
|
gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True),
|
|
|
|
seed,
|
|
|
|
gr.update(value = information, visible = True),
|
|
|
|
gr.update(visible = True)
|
|
]
|
|
|
|
@torch.no_grad()
|
|
@spaces.GPU(duration=180)
|
|
def animate_on_gpu(
|
|
image_data: Union[Image.Image, List[Image.Image]],
|
|
seed: Optional[int] = 42,
|
|
motion_bucket_id: int = 127,
|
|
fps_id: int = 6,
|
|
noise_aug_strength: float = 0.1,
|
|
decoding_t: int = 3,
|
|
version: str = "svdxt",
|
|
width: int = 1024,
|
|
height: int = 576,
|
|
num_inference_steps: int = 25
|
|
):
|
|
generator = torch.manual_seed(seed)
|
|
|
|
if version == "dragnuwa":
|
|
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
|
elif version == "svdxt":
|
|
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
|
else:
|
|
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0]
|
|
|
|
|
|
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
if image.width == output_size[0] and image.height == output_size[1]:
|
|
return image
|
|
|
|
|
|
target_aspect = output_size[0] / output_size[1]
|
|
image_aspect = image.width / image.height
|
|
|
|
|
|
if image_aspect > target_aspect:
|
|
|
|
new_height = output_size[1]
|
|
new_width = int(new_height * image_aspect)
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
left = (new_width - output_size[0]) / 2
|
|
top = 0
|
|
right = (new_width + output_size[0]) / 2
|
|
bottom = output_size[1]
|
|
else:
|
|
|
|
new_width = output_size[0]
|
|
new_height = int(new_width / image_aspect)
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
left = 0
|
|
top = (new_height - output_size[1]) / 2
|
|
right = output_size[0]
|
|
bottom = (new_height + output_size[1]) / 2
|
|
|
|
|
|
return resized_image.crop((left, top, right, bottom))
|
|
|
|
def reset():
|
|
return [
|
|
None,
|
|
random.randint(0, max_64_bit_int),
|
|
True,
|
|
127,
|
|
6,
|
|
0.1,
|
|
3,
|
|
"mp4",
|
|
"webp",
|
|
"auto",
|
|
1024,
|
|
576,
|
|
False,
|
|
25
|
|
]
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.HTML("""
|
|
<h1><center>Image-to-Video</center></h1>
|
|
<big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big>
|
|
<br/>
|
|
|
|
<p>
|
|
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence.
|
|
No prompt or camera control is handled here.
|
|
To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>.
|
|
If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>.
|
|
</p>
|
|
""")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image = gr.Image(label="Upload your image", type="pil")
|
|
with gr.Accordion("Advanced options", open=False):
|
|
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8)
|
|
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8)
|
|
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False)
|
|
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True)
|
|
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True)
|
|
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30)
|
|
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
|
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
|
|
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1)
|
|
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
|
|
version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True)
|
|
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
generate_btn = gr.Button(value="π Animate", variant="primary")
|
|
reset_btn = gr.Button(value="π§Ή Reinit page", variant="stop", elem_id="reset_button", visible = False)
|
|
|
|
with gr.Column():
|
|
video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False)
|
|
gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False)
|
|
download_button = gr.DownloadButton(label="πΎ Download video", visible=False)
|
|
information_msg = gr.HTML(visible=False)
|
|
gallery = gr.Gallery(label="Generated frames", visible=False)
|
|
|
|
generate_btn.click(fn=animate, inputs=[
|
|
image,
|
|
seed,
|
|
randomize_seed,
|
|
motion_bucket_id,
|
|
fps_id,
|
|
noise_aug_strength,
|
|
decoding_t,
|
|
video_format,
|
|
frame_format,
|
|
version,
|
|
width,
|
|
height,
|
|
motion_control,
|
|
num_inference_steps
|
|
], outputs=[
|
|
video_output,
|
|
gif_output,
|
|
download_button,
|
|
gallery,
|
|
seed,
|
|
information_msg,
|
|
reset_btn
|
|
], api_name="video")
|
|
|
|
reset_btn.click(fn = reset, inputs = [], outputs = [
|
|
image,
|
|
seed,
|
|
randomize_seed,
|
|
motion_bucket_id,
|
|
fps_id,
|
|
noise_aug_strength,
|
|
decoding_t,
|
|
video_format,
|
|
frame_format,
|
|
version,
|
|
width,
|
|
height,
|
|
motion_control,
|
|
num_inference_steps
|
|
], queue = False, show_progress = False)
|
|
|
|
gr.Examples(
|
|
examples=[
|
|
["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
|
["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25],
|
|
["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25]
|
|
],
|
|
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps],
|
|
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn],
|
|
fn=animate,
|
|
run_on_click=True,
|
|
cache_examples=False,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch(share=True, show_api=False) |